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Abstract. Complex networks have been extensively studied across many fields, especially
in interdisciplinary areas. It has since long been recognized that topological structures and
dynamics are important aspects for capturing the essence of complex networks. The recent
years have also witnessed the emergence of several new elements which play important roles
in network study. By combining the results of different research orientations in our group,
we provide here a review of the recent advances in regards to spectral graph theory, opinion
dynamics, interdependent networks, graph energy theory and temporal networks. We hope this
will be helpful for the newcomers of those fields to discover new intriguing topics.

1. Introduction
Complex network describes the interaction among the elements of complex systems, which
consider particular nature of beings as vertices and perform specified function through
interactions among vertices, such as scientific collaboration network[1, 2], language network [3],
spreading network [4, 5], earthquake network [6, 7], stock network [8, 9], evolutionary network
[10, 11] and so on. The study of networks, network theory, is an useful tool for analyzing complex
system, which is an emerging area of science [12], and has many applications, especially in the
interdisciplinary areas [13, 14, 15]. Even though there exist myriads of real networks in the
world, scientists are more willing to believe most of networks are marked by several features and
governed by countable laws. In recent years, many progresses have drawn continuously increasing
attentions and brought us different understandings and new insights [16, 17, 18, 19, 20, 21, 22, 23].
One of the amazing points in the research of complex networks is that the objects in
networks are not separated, but interact with each other through links. This interaction can
be investigated from the viewpoint of the basic structural feature of complex networks. For
example, spectral graph theory studies the properties of graphs through the spectra of their
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representing matrices [24, 25]. Graph energy is associated with the graph structure in the sense
of building cost [26, 27]. Entropy is a general measure of probabilistic uncertainty and proves
to be related to the mathematical structure of a complex network [28, 29, 30, 31, 32].

Besides the exploration on the structure of complex networks, the study of dynamics behaviors
focuses on the interaction among individuals directly. Individual changes its state through the
influence of its neighbors, and also exerts its influence to its neighbours to cause the possible
change of their states. For example, opinion dynamics is one of the collective dynamical
phenomena in the society [33]. The convergence (or divergence) of opinions among participants
of a system is realized through the interactions among participants. Moreover, the interaction
phenomenon sometimes does not only happen among individuals, but among independent
networks. For example, the failure of nodes in interdependent networks generally not only
leads to the failure of their neighbors, but leads to the failure of their dependent nodes in other
networks, which may in turn cause further damages to the first network, resulting in cascading
failures and catastrophic consequences in the entire system [34].

Additionally, interaction itself is also an interesting object. Take a simple example, in real-
world complex systems, many relationships are (relatively) permanent, such as the existing
collaboration relationship between two authors in scientific collaboration networks. However,
there also exist some relationships which do not persist over long time, but only exist during
short periods of time. This temporal effects of complex systems can be taken into account by
the temporal networks [35] (also called time-varying graphs [36], or evolving graphs [37]).

2. Spectral graph theory

For a long time, graph theory has played a vital role in analyzing and understanding networks
structures. All the topological information of one network can be found in its connectivity
matrices. As a related object to matrices, eigenvalue is naturally used to explore the structural
properties of a graph. The initial question is that how much information of a graph is contained
in its eigenvalues sequence. This problem is described by spectral graph theory, which is the
study of properties of a graph in relationship to eigenvalues of its associated matrices.

In the early days, matrix theory were used to analyze the adjacency matrix of graph. There
is a large amount of literatures on algebraic aspects of spectral graph theory, such as Biggs [38],
Cvetkovié [39] and Godsil et al. [40]. In a way, spectral graph theory can be considered as the
well-developed theory of matrices, of which the purpose is to be related to graph theory and
applications with its own characteristics.

In the recent years, many developments in spectral graph theory have the geometric favors
on graph, as shown by Chung [24] and Jost [25]. An important development of spectral graph
theory is the interaction with Riemannian geometry. For example, the Cheeger constant from
Riemannian geometry has a discrete analogue, which can provide estimation for the first non-zero
eigenvalues of the Laplacian matrix [41].

In network theory, besides modeling of complex networks, considerable attention has been
given to the problems of capturing topological properties. In particular, it was proved that
the important information on the topological properties of a network can be extracted from its
spectra [24, 39]. For example, in 1955, Wigner introduced Wigner semicircle law, for certain
special classes of random matrices [42, 43]. According to this, the distribution of eigenvalues of a
large real symmetric random matrix follows a semicircle distribution. Specifically, the eigenvalues
of adjacent matrix and Laplacian matrix of Erdos-Rényi random networks follow the semicircle
distributions [44]. The eigenvalues distributions of Watts-Strogatz small-world networks and
some of power-law networks are quite far form semicircle [44, 45]. Besides, Banerjee summed
up Laplacian spectra for different types of networks and introduced a tentative classification
scheme for empirical networks based on their Laplacian spectra [46]. He also revealed more
understanding about Laplacian spectra and some particular dynamical processes on networks.
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The search on distinguishing the unique characteristics for a given system and uncovering
the universal features on large set of systems attracts great interests of scientists [47, 48, 49].
Three generic models support rough classification among networks, but can not provide further
classification, especially for networks within the same class. Motif supplies a deep insight into
the networks functional abilities associated with evolutionary process, of which analysis implies
a similarity measurement based on a comparison of subgraphs frequencies on networks [50]. One
problem with this method returns back to the same one shown in graph case, if motifs are too
large, then the isomorphism problem appears again. Furthermore, for one important class of
networks in our world, biological systems, there are lots of evidences showing the evolutionary
process on them can result in their structure changes [51, 52]. The comparison of structures
of biological networks may bring us new insights about evolutionary mechanism in biological
systems. Without analyzing sequence data of gene or genome, this comparison, focusing on the
whole network structure, may support us one way in understanding the functions and evolutions
of biological system more conjointly and more intuitively. There is no doubt that graph spectra
theory becomes one important and useful tool for analyze networks and brings crucial insights
on hiding geometry information of networks.

3. Graph energy

The energy of a graph is an important parameter related to the building cost of the graph.
Generally speaking, low energy means low cost, and then, which can be connected to the graph
with better structure. Briefly, the energy of a graph is defined as the sum of the absolute values
of the eigenvalues of its adjacency matrix. This definition, introduced by Gutman in the 1970s
[26], is coming from chemistry where it was used to approximate the total 7-electron energy of
molecules [53]. Initially, graph energy did not draw many attentions of either mathematicians
or physicists. Until the coming of the 21st century, extensive research about the graph energy
started.

Researches related to the energy of graph can be traced to the 1940s or even 1930s
[54, 55, 56, 57]. A finite and undirected graph G with N nodes is denoted to be ”hyper-
energetic” if its energy is larger than 2(N — 1) [58], which corresponds to the energy of a
complete graph with N vertices. However, if the energy of a connected graph G is less than N,
then the graph will be called "hypo-energetic” graph [59]. And another one that corresponds to
the "hypo-energetic” graph is the strong graph with energy being smaller than (N —1) [60]. The
structure of graph G on N vertices with energy N can be constructed by N/2 isolated edges,
or N/4 isolated quadrangles or something else. In all graphs with N vertices, star graph owns
the lowest energy 2+/NN — 1, except the trivial empty graph whose energy is zero. Actually, the
"hypo-energetic” graphs are not so common as Li¢ illustrated all this class of graphs with the
maximum degree at most 3 [61]. But the ”hyper-energetic” graphs are very probable. Gutman
has found that ”hyper-energetic” graphs of order N exist for all N > 8 [58], which means that
there are no ”hyper-energetic” graphs with less than 8 vertices. And all graphs with more than
(2N — 1) edges are "hyper-energetic” [62].

Researchers are striving to find the upper and lower bounds of energy for some special graphs.
Firstly, for a graph on N vertices, the energy is less than or equal to %(1 + v/N), where the
upper bound is related to a strongly regular graph with some special parameters [63], which
are equivalent to a certain type of Hadamard matrices. Haemers surveyed constructions of the
corresponding Hadamard matrices and the related strongly regular graphs [64]. While the energy
of a graph with given vertices N and edges m will be less than or equal to v2mN according to
the Cauchy-Schwarz inequality with equality holding if and only if the graph is either empty or
1-regular [65]. And for a regular graph with given vertices and average degree, the energy will
also have a largest value [66], which is deduced from the energy of a very general graph on N

vertices with m(> N/2) edges, whose upper bound for the energy is QWm—l—\/(N —1)[2m — (32)?],
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where equality holds for some special networks, see Ref. [63]. The results we have mentioned
are limited to a general graph. However, most lower or upper bounds are just corresponding to
some special graphs, such as the bipartite graph, whose eigenvalues are symmetrical about zero.

The upper bounds for graph energy we have introduced are for the graph with given vertices.
However, if a graph is just given the number of edges m but with unknown vertices, the graph
energy will also be restricted to a region [2y/m,2m] [67]. The lowest value will be taken if a
graph consists of a complete bipartite graph and some arbitrarily isolated vertices. The energy
will reach the upper bound while the graph is consisting of m copies of P, (a path of two
connected vertices) and some isolated vertices. Except for the energy, the largest eigenvalue
of adjacency matrix for a general graph will be larger than or equal to the second moment of
degree sequence [68]. And this equality will be held only by regular or semiregular bipartite
graph. In 2003, Koolen and Moulton strictly proved that there is a upper bound for the energy
of a general bipartite graph according to the number of vertices [69]. So, for all bipartite graphs
with the same vertices, there will be a graph with special topological structure corresponding
to the maximal energy.

We know that the lower or upper bounds for the graph energy are just connected to some
special graphs. That means that the minimal or maximal energy graphs are very limited.
However, this limitation is inapplicable for those graphs without the minimal or maximal energy.
In 2004, Balakrishnan established the existence of equienergetic non-cospectral graphs [66]. He
defined that two graphs on the same vertices are called equienergetic if they have the same energy.
When two graphs own the same spectra, then they will be called cospectral. Take as a simple
example, two simple graphs with two isolated edges and with a quadrangle that are equienergetic
non-cospectral with the same energy 4. While the spectra of them are {—1,—1,4+1,+1}, and
{—2,0,0,2}respectively. There is no doubt that two cospectral graphs are also equienergetic.

In recent years, many researches have been studying the graph energy related to the regular
graphs [70, 71]. This may be driven from the isotropic of regular graphs that can be easily
analyzed from the theoretical view. Gutman firstly pointed out that the energy of k-regular
graph G on any N-vertices is greater than or equal to N [72]. Therefore, a regular graph with
degree k > 0 will be never hypo-energetic. If GG is also triangle-and quadrangle-free, the minimal
value for the energy will depends on k. In Ref. [72], Gutman also showed a remarkable narrow
interval for the energy of fullerene or nanotube which can be represented as a 3-regular graph
without triangles and quadrangles [73].

4. Opinion dynamics with social diversity

Opinion dynamics is one of the collective dynamical phenomena in society. Convergence (or
divergence) of opinions among participants of a debate is a very important social process [74],
which is similar to the phase transition from disorder to order of Ising model in statistical
physics. Here, we review some works about the effect of social diversity of agents in the opinion
dynamics briefly.

In real society, the diversity of agents can be described from different aspects, including the
social status, the psychological attitude and mental path. The agents are diverse in their wealth
and social status and have diverse influence on others. For simplicity, Guan et al. considered
the two types of agents A and B with different influence activity in the majority rule model
and find that the role of the heterogeneous influence in the order-disorder transition [75]. For
example, social leaders have stronger influence compared to normal populations and have a
better chance to be followed [76]. And in social networks, the social power of agent may also be
quantified as a proportion of its connection degree [76, 77, 78, 79, 80], since the social leader has
many followers, namely vertices to which he/she is linked generally. Kandiah and Shepelyansky
introduced the PageRank method to weight the nodes’ social power and proposed the PageRank
opinion formation (PROF) model [81].
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The diversity of agents can also be described according to the psychological attitude
and mental path. In real life, people are always rational and make decision through team
collaboration or group debate. Then they update their opinion following the rule of peer
pressure in majority-rule model. However, some people are inflexible and contrarians, which
play an important role in the opinion formation [82]. The inflexible reflects the inertia effect
of human during making decision. In contrast to the floater agent who updates its opinion
according to the rule of opinion model, inflexible agents keep their opinion always unchanged.
Galam and Jacobs [82] studied the role of inflexible minorities in the democratic opinion model
following the local majority firstly. Biswas and Sen introduced the inflexible in a model of binary
opinions in which the updating of agent’s opinion according to the state of their neighboring
domains with the probability p [83]. Masuda et al. introduce the parameter e quantifying the
strength of the intrinsic preference or partisanship in the voter model [84]. When e = 1, each
voter becomes a zealot that never changes opinion (i.e., inflexible) after aligning with its innate
preference, when e = 0 reduces to the classic voter model. Here, the zealot effect of voters that
never change opinion (i.e., the inflexible effect) has been studied in Refs. [85, 86]. Moreover,
the opinion leaders also are considered as the special inflexible [87].

The other psychological attitude is the contrarians, who are the agents that deliberately
decides to oppose the prevailing choice of others. Mobilia and Redner introduced a model of
opinion formation according to the majority versus minority with the probability p [88]. Borghesi
and Galam introduced the contrarian effect in the Galam model with a constant density of
contrarian a for both opinions to study the chaotic, staggered and polarized dynamics [89].
Ding et al. introduced the application of game theory to model the opinion dynamics [90].
Furthermore, the contrarian effect has been introduced in the Sznajd model [91, 92] and g-
voter model [93] through a stochastic parameter p. However, those previous works describe
the contrarian effect as a constant stochastic parameter, which is too simple to describe the
heterogeneous property of agents in social networks. Probably, the contrarian effect can also
be determined by the present status of agents, such as the change of its local environment.
Grauvwin and Jensen propose a natural, thermal noise which allows for a small probability of
interaction between agents when the opinion difference A > € in Deffuant model with the
form of peony = [1 + exp((A/e — 1)/T)]!, where T resembles a temperature and characterize
the steepness of the convergence and called interaction noise that shows the contrarian effect
indirectly [94].

5. The robustness study of interdependent networks

The robustness of interdependent networks has attracted a great deal of attention and
understanding how robustness is affected by the interdependence is one of the main challenges
faced when designing resilient infrastructures. For example, the robustness of critical
infrastructure is one of the most important topics all over the world: specially, different
kinds of infrastructure have become more and more interactive under modern technology, like
communication and power grid systems, water and food supply systems [95].

In 2010, the seminal model of interdependent networks has defined a one-to-one
correspondence between nodes of network A and nodes of networks B [34]. Suppose that two
networks have the same number of nodes N. Each node 4;(i = 1,2,..., N) in network A depends
on a functioning node B; in network B, and if node A; stops functioning owing to attack or
failure, node B; stops functioning, and vice versa. Based on the generating function formalism
and percolation theory, a first-order discontinuous phase transition was found in this model,
which is totally different from the second -order continuous phase transition found in isolated
networks. In Ref. [96], it was shown that, when the strength of coupling between networks
is reduced, the percolation transition becomes second-order transition at a critical coupling
strength, which enhanced the robustness of the system. In addition, the vulnerability of the
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system could be increased by the clustering and assortativity within the network components
[97, 98]. And a more realistic case with both strength of coupling and connectivity links between
the coupled networks was studied in Ref. [99].

However, the assumption that one node in network A depends on only one node in network
B is not valid sometimes. In 2011, Ref. [100] investigated a theoretical framework to study the
robustness of two interdependent networks with multiple support dependent relations.

Real interdependent networks are usually not randomly coupled: for example, well-connected
ports tend to couple to well-connected airports. So Ref. [101] proposed two inter-similarity
measures between the interdependent networks and found that the more inter-similar the entire
network is, the more robust the system is [102]. The case in which all pairs of interdependent
nodes in both networks have the same degree was studied in Ref. [103]. In the real world, a
network is not always attacked randomly. Ref. [104] investigated the robustness of fully and
partially interdependent networks under targeted attack, respectively.

As most of real systems are not randomly but spatially embedded, it is reasonable to consider
the factor of space limitation. In interdependent lattice networks, Ref. [105] found that there
is a change from first to second order phase transition at the critical length of dependency
links and Ref. [106] concluded that there is no critical dependency and any small fraction of
interdependent nodes leads to an abrupt collapse. Moreover, transport process has been explored
in coupled spatial networks in Ref. [107].

There are also some other considerations beyond above ones. A network of networks (NON)
is taken into account in Refs. [108, 109] with more realistic consideration that there are more
than two interdependent networks in many real systems. Antagonistic interaction [110, 111],
autonomous nodes [112] and node-weighted [113] are considered in study of interdependent
networks, respectively, which are leading to a better understanding of the effect of dependence
between networks on the dynamics of interdependent networks.

6. Temporal networks

Temporal networks, compared to static networks, emphasize on the times when and how long
contact events (edges) are present. The addition of time dimension provides a new sight into
the framework of complex network theory. In temporal networks, structural properties and
spreading dynamics are constrained by the time ordering of edges. Consequently, the concepts
and methods for temporal networks need to be extended or redefined based on the top of static
graphs.

In the research of temporal networks, aggregated static networks play a crucial role in
understanding the temporal effect of network structure due to the lack of methods to uncover full
contact patterns. We can aggregate temporal networks to a list of snapshots of static graphs if
the topological characteristics are more relevant than the temporal properties, since it is usually
easier to analyze static networks. A temporal network is described as G(V, E,t,dt), in which
the contact event happens at time ¢ and 4t is its duration. An edge is formed in the aggregated
network if there is at least one contact happening in time window [¢,¢ 4+ At]. It is noticed that
the aggregation time interval At has critical consequences on the structural properties emerging
from temporal networks. Many existing tools of static graphs have been adopted to analyze
temporal networks. For instance, the error and attack vulnerability of temporal networks [114],
optimal way for constructing static snapshots in temporal networks [115], and so on.

The adjacency matrix in a temporal network is defined as a(i, j,t) = 1 if there exists an edge
between node i and node j at time ¢, and a(i, j, t) = 0 otherwise. Given the adjacency matrix as a
function of time, the path of temporal networks has two distinct definitions [36]. One corresponds
to topological distance, which is analogous to shortest path length in static networks. The other
is referred to temporal distance, which means the path of minimum duration to reach each
other. Keep these time-respecting paths in mind, we can redefine temporal degree, betweenness,
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centrality, closeness, component, motif, to name a few. However, not all the structural concepts
have their counterparts in static graphs. Holme introduced the concept of reachability as a
time-ordered chain of contact leading from one node to the other [116]. Lentz et al. proposed
accessibility to measure temporal networks [117]. See Ref [35] for a review of more details.

In order to find the fundamental role of time ordering and duration, the other direction is
to gain insights into the effects of different time correlations. Null temporal models are served
as a reference, in which the original time sequences are randomized. It allows us to distinguish
between different contributions to the time correlations coming from randomizing contact times,
nodes, edges, or combinations of the three.

Besides of this, scientists have also interest in the following question: how will the temporal
structures affect dynamical processes on temporal networks, and vice versa? For example,
concerning contact events exhibit heterogeneous inter-event time distributions, bursty characters
[118] have a strong influence on dynamical processes on temporal networks.

The other effort along this line is to control or to avoid the spread. Lee et al. have introduced
the concepts of Recent and Weight to investigate the immune strategy [119]. Recent and Weight
are specified as the most recent contact and the most often contact, respectively. The research
towards spreading dynamics of temporal networks has grown in various aspects ranging from
cascades [120] and random walks [121] to synchronization [122], and so on.

Despite the promoting results in temporal networks, this field is still in its infancy and there
is not yet a general framework for describing and analyzing it. For example, what is the proper
(or characteristic) aggregated time window to reflect network structure over time? Dynamical
approaches remain rare in describing spreading processes. Standard models are still lacking
for the study of temporal networks. By extending theory and analyzing data to account for
temporal networks, we can approach a better understanding of time-stamped complex system.
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