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Abstract. The power and resistance of two-port complex resistor network based on NW small
world network model are studied in this paper. Mainly, we study the dependence of the network
power and resistance on the degree of port vertices, the connection probability and the shortest
distance. Qualitative analysis and a simplified formula for network resistance are given out.
Finally, we define a branching parameter and give out its physical meaning in the analysis of
complex resistor network.

1. Introduction

Complex networks have recently emerged as an invaluable tool for describing and quantifying
complex systems in many branches of science[l, 2, 3, 4]. Suppose the edges are resistors and
the vertices are junctions between resistors, and suppose we apply a voltage or current between
two vertices s and t such that a current I flows from s to ¢ through the network. What
then is the property of complex network composed by resistors? In 1993, Klein proposed the
concept of resistance distance of graphs[5]. In 2010, Newman gave a brief introduction on how
to solve vertex voltage in active two-port complex resistor network[4]. Along with the in-depth
study of the physical meaning and the topological feature of complex network, many complex
networks are found to display community structure[6, 7, 8], dividing naturally into communities
or modules with dense connections within communities but sparse connections among them.
Communities have proven to be of interest both in their own right as functional building blocks
within networks and for the insights they offer into the dynamics or modes of the formation
of networks. A large volume of research has been devoted to the development of algorithmic
tools for discovering communities[9, 10, 11, 12, 13]. In 2004, Wu and Huberman presented a fast
spectrum segmentation method based on resistor network voltage spectrum, combining with
the Kirchhoff’s current law, the segmentation of community structure was solved in a better
way|[14].

For the explicit computation of two-port resistance, much work has been done on arbitrary
finite and infinite lattices in terms of the eigenvalues and eigenvectors of the Laplacian
matrix[15, 16, 17, 18]. That is, most studies of resistor network focus on the calculation of
equivalent resistance of regular networks[19] while the study of resistor network based on complex
network model is relatively less. In this paper, two-port resistor network based on NW small
world complex network model[20] are studied. Mainly, we study the dependence of the network
power and resistance on the degree of port vertices, the connection probability and the shortest
distance. Qualitative analysis and a simplified formula for network resistance are given out.
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Finally, we define a branching parameter and give out its physical meaning in the analysis of
complex resistor network.

2. Electrical properties of resistor network

Suppose we apply a voltage or current between two vertices s and t such that there is a current
I flows from s to t through the network, where s is the input vertex and ¢ is the output
vertex(s # t). By setting the reference voltage of the output vertex ¢ as U; = 0, the relative
voltage of the input vertex s as U, the electrical parameters of complex resistor network are
given below.

2.1. The resistance of complex resistor network
In this paper, network resistance is divided into two types: network resistance of vertex-pair
R(s,t) and network resistance of vertex-degree R(ks,k:). R(s,t) is the equivalent total network
resistance from the input vertex s to the output vertex ¢, such that:
U.
R(s,t) = —. (1)
I
As for fixed input-output vertex-pair (s,t), R(s,t) is a fixed value independent of the applied
voltage or current, we get R(s,t) = R(t,s). Network resistance of vertex-degree R(ks,k;) is

defined as the average value of network resistance of vertex-pair with the same input-output
degree (ks, kt):

1

s B = N o)

R(s,1). (2)
SEVS ,t€‘/t

Where N(kg, k;) is the number of vertex-pair whose degrees are (ks, k¢), Vs is the collection
of vertices whose degree is ks, V; is the collection of vertices whose degree is k;. R(ks, k) is also
independent of the applied voltage and current R(k, ks) = R(ks, kt).

2.2. The power of complex resistor network

Network power is also divided into two types: network power of vertex-pair P(s,t) and network
power of vertex-degree P(ks, k). P(s,t) is the total power consumption of the complex resistor
network when a current [ is inputted at vertex s and flow out from vertex t:

P(s,t) = IU,. (3)

On account of that different vertex-pairs in the network may have the same degree as (ks, k¢),

the average value of the total power of these vertex-pairs is called the network power of vertex-
degree, denoted by P(ks, kt):

1
Plheb) = N, )

Here P(s,t) = P(t,s), P(ks, ki) = Pk, ks)

P(s,1). (4)
seVs,teVy

3. The relationship between the electrical properties and the topological structure
of complex resistor network

In general, small resistor network can be solved by its properties of series connection and parallel
connection: the more the branches of the network have, the more parallel resistors it have and
the smaller the total resistance will be, thus the network current streaming capability will
be strong. For large resistor network based on a complex network, network voltage division
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capability and current streaming capability can be used to describe the affection of complex
network topological structure on network electrical properties. In this paper, we select network
power and resistance to describe network’s voltage division capability and current streaming
capability. For the same complex resistor network, when the input current is constant, the
smaller the network resistance of vertex-pair R(s,t), the smaller the power of vertex-pair P(s,t)
and the stronger the current streaming capability, otherwise the current streaming capability
will be weak correspondingly; when the input voltage remains constant, the bigger the network
resistance of vertex-pair R(s,t), the smaller the network power of vertex-pair P(s,t) and the
stronger the voltage division capability, or it will be weak. As for different complex resistor
network, we can evaluate the current streaming capability of the network by comparing the
network resistance of vertex-degree R(ks,k;) and the network power of vertex-degree P(ks, k).

Evidently, the electrical properties of complex resistor network have great relationship with
its underlying topological structure. Even for the same network model, when the input and
output vertices are different, the corresponding electrical parameters will be different. However,
the statistical features such as degree distribution, shortest distance distribution, etc. will
remain unchanged. Then, what’s the relationship between these electrical parameters and the
statistical features of the complex networks? We study this problem on the basis of NW small-
world complex network model.

3.1. The Relationship between network power and input-output vertex degree

The resistor network here is a small world complex network with N = 1000 vertices based on
NW small world complex network model. The unit of resistance and current was omitted for
convenience. By setting all the edge resistance Ry = 1, the input current I = 10, the connection
probability p = 0.002(average degree (k) = 5.84) and p = 0.04(average degree (k) = 80.53),
and the shortest distance from the input vertex to the output vertex d = 1, Figure 1-6 give out
the relationship between network power P(s,t), P(ks, k) and the input-output degree (ks, k¢).
Figure 1 and Figure 2 are three dimensional evolution of the network power of vertex-pair P(s,t)
along with the input and output vertex degree ks and k; with different connection probabilities.
Figure 3 and Figure 4 are the change of network power of vertex-pair P(s,t) with the change
of output vertex degree k; while the input vertex degree ks remains unchanged. Figure 5 and
Figure 6 are the change of network power of vertex-degree P(ks,k;) with the change of output
vertex degree k; while the input vertex degree ks remains unchanged.
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Figure 1. Three dimensional
evolution of network power of

Figure 2. Three dimensional
evolution of network power of

vertex-pair P(s,t) along with the
input and output vertex degree
ks and k; when the connection
probability p = 0.002((k) = 5.84).
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input and output vertex degree
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probability p = 0.04((k) = 80.53).
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Figure 3. The change of net-
work power of vertex-pair P(s,t)
with the change of output vertex
degree while the input vertex de-
gree remains unchanged when p =

0.002((k) = 5.84).
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Figure 6. The change of network
power of vertex-degree P(kg,k;)
with the change of output vertex
degree while the input vertex de-
gree remains unchanged when p =

0.04((k) = 80.53).

We can find from Figure 1-4 that when the shortest distance between input and output
vertices is constant, network power of vertex-pair P(s,t) shows a trend of decreasing along with
the increase of the input/output vertex degree ks /k; when the output/input vertex degree ks /ks
remains unchanged. These results can also be observed from Figure 5 and Figure 6, where the
network power of vertex-degree P(ks,k;) shows a trend of decreasing along with the increasing
of the input/output degree ks/k;. The reason for the above results is that the number of parallel
branches between the input and output vertices is determined by the input and output vertex
degree. The greater the ks and k;, the more the parallel branches, the smaller R(s,t), the smaller
P(s,t) and P(ks, kt), such that the current streaming capability of the network will be stronger,

whereas weaker.

3.2. The relationship between network power and edge connection probability
In Figure 1 and Figure 3, when the input and output vertex degree ks, k; keeps the same,
the network power of vertex-pair P(s,t) corresponded to them does not completely identical,
but changes in an interval. However, the diversity in Figure 2 and Figure 4 is not obvious,
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where the network power of vertex-pair P(s,t) is approximately equal. What’s more, Figure 5
and Figure 6 show that the change of the network power of vertex-degree P(ks, k) when the
connection probability p = 0.002 is a curve while the change of the network power of vertex-
degree P(kg,k;) when the connection probability p = 0.04 is almost a straight line. And the
network power when the connection probability p = 0.002 is obviously larger than the network
power when the connection probability p = 0.04. These results can be illustrated by network
resistance. Assuming that:

e The number of branches between vertex s and vertex t is n. In general, the larger the degree
ks and k¢, the bigger the n.

e The resistance of each branch from vertex s to vertex t is simplified into one same-value
Rs(this is true when the size of the complex resistor network is large), then the total
resistance R can be formulated as follows:

TR R S 9
R_ S Rs RS
Thus,
R
R=— 6
- (6)

Here R can be R(s,t) or R(ks,k:). The smaller n, the more R changes. Such as when
n =12 R = R, 0.5R,, the R —n figures are curves of inversely proportional function. But
the larger n and the less R changes, such as when n = 700,800, R = 0.0014R,,0.00125R;,
R —n curves are approximately straight lines. When p = 0, the network resistance is the largest
and the current streaming capability is the weakest. And when the connection probability p is
small, the branch number n from s to ¢ with the same degree (ks, k) fluctuates strongly, so does
P(s,t), as shown in Figure 1 and Figure 3: the same input-output degree (ks, k;) has different
network power P(s,t). As the edge connection probability p keeps on increasing, the average
degree of the network (k) gradually increases, then n also increases, so R(ks, k) and P(ks, k)
reduce. With the increase of n, the fluctuation of n tends to be gentle, thus the change of the
network resistance is less and less obvious, and the difference of P(s,t) is smaller and smaller,
as shown in Figure 2 and Figure 4: different P(s,t) corresponded to the same (ks, k) gradually
concentrate into points. When p = 1, all the vertex degrees reach the maximum same value so
does n, and P(s,t) and P(ks, ki) reach the minimum, P(ks, k;) = P(s,t), the current streaming
capability is the strongest.

3.3. The relationship between network power and the shortest distance
In this part, we choose proper connection probability p, so that the generated resistor network
model has wide range of shortest distance. And the the vertices whose degree are close to
the average degree (k) are selected as input-output vertices in order to get powerful results.
Detailedly, we choose the NW complex small world resistor network with connection probabilities
p = 0.001, p = 0.002 and p = 0.005, the corresponding average degrees are (k) = 4.02, (k) = 5.84
and (k) = 12.07, the average shortest distances are (d) = 5.3023, (d) = 4.1497 and (d) = 3.0327,
and the shortest distances range among vertices are d = [1,10], d = [1,7] and d = [1,5]. Figure
7 to Figure 10 give out the simulation results of network power vs. shortest distance with
ks = kit = 4 when p = 0.001, ks = k; = 6 when p = 0.002 and k; = k; = 12 when p = 0.005.
From the three groups of scatters in Figrue 7, Figure 8 and Figure 9, it can be seen that the
maximum and minimum value of the network power of vertex-pair P(s,t) have no obvious trends
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vs. the shortest distance when d > 1. Figure 10 shows that when the connection probability p
is small, the network power of vertex-degree P(ks, ki) increases with the increase of the shortest
distance d. However, with the increase of the connection probability p, the difference of the
network power of vertex-degree P(ks,k;) corresponded to different d are getting smaller, the
curves of P(ks, k) vs. d will be an approximately straight line. What’s more, P(ks, k) exhibits
bigger change when the difference between the value of d and (d) is large than the case when d
is closes to (d). P(s,t) and P(ks,k;) with d = 1 are both smaller than other cases of d.
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For a small resistor network, due to limited number of branches, the total resistance is mainly
determined by the branch with the smallest resistance. In a complex network of resistors,
however, because of the large number of branches, the total network resistance will not only
related to the branch with the smallest resistance but also the number of these branches.
Assuming that the shortest distance from vertex s to vertex t is d, the maximum length of
loop-free path from s to t is d,,q:, and the simplified resistance between adjacent nodes are all
Ry, the property of complex resistor network can be studied by the following simplification:

e Regarding each loop-free path from vertex s to vertex ¢ as a branch.

e The number of the loop-free paths from s to ¢ with length d; is m;. The corresponding
branch resistance is d; Ry, d; € (d, dmaz)-
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Assuming that d; = d + i — 1, then ¢ € (1,dper — d + 1). When kg and k; are fixed,
m; = m;(s,t,d). The network resistance of vertex-pair with the same shortest distance R(s,t,d)
can be expressed as:

1 Ry
R(s,t,d) = = 7
( ) dmax_d+1 mi(s,t,d) dmax_d+1 mi(s,t,d) ( )
: d; Ro : d+i—1
i=1 i=1
Here we introduce the branching factor:
dmaz—d+1
g m;(s,t,d)
flstd)= Y o (8)
= dt+i-l

The network resistance of vertex-degree with the same shortest distance R(ks, k¢, d) can be
written as:

1
R(ks,kt,d):W > R(s,t,d) (9)
(s,t)EV(ks,kt,d)
or
1
Rk kpod) = —— Y _fo (10)

N(d) (5,t)€V (ks ,kt,d) f(s,t,d)

N(d) is number of vertex-pair with the same shortest distance d and vertex degree (ks, k),
V(ks, k¢, d) is the collection of these vertices. For different vertex-pairs with the same degree
(ks, ki) and shortest distance d, m;(s,t,d) and d,,q, are usually different, this results in the
fluctuation of P(s,t) in Figure 7, Figure 8 and Figure 9. For most of the vertex-pairs in complex
resistor network, when d; is close to the average shortest distance (d) of the network, m;(s,t,d)
is large, and when the difference between d; and (d) is large, m;(s,t,d) is small: m;(s,t,d) firstly
increases and then reduces with the increase of d;. Thus, for different vertex-pairs with the same
vertex degree, when d = 1, the value range of (dqe —d+ 1) for d; is the maximum, the number
of parallel branches is the maximum, f is maximum(Equation 8), R(ks, k¢, d) of vertex-degree is
minimum(Equation 10), the network power of vertex-degree P(ks,k:) is minimum, the current
streaming capability is the strongest. With the increase of d, the value range of (dyae — d + 1)
gradually reduces, the number of parallel branches gradually reduces, f reduces, so that the
network resistance of vertex-degree R(ks, k:) and the network power of vertex-degree P(ks,k;)
both increase. When d is close to the average shortest distance (d), the number of parallel
branches decreases, f(d) changes gently, so that R(ks, k) and P(ks, k) change gently, as shown
in Figure 10. When d = d;;q,the range of (dyqr — d+ 1) is the smallest, the number of parallel
branches reaches the minimum, f is minimum, R(ks, k;) and P(ks, k¢) reach the maximum, the
streaming capability is the weakest. Generally speaking, it is the reduction of the number of
branches when the shortest distance from the input vertex to the output vertex increases, which
leads to the the increase of network resistance and network power.

4. Summary and Outlook
In this paper, we established an undirected complex resistor network based on NW small world
network model. The relationship between network current streaming capability and network
structure is studied. By simulation and analytical analysis, we got the following results:

a) Complex network resistance and power have a decreasing trend with the increase of the
input or output vertex degree.
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b) With the increase of edge connection probability, network resistance and power decrease,
and the current streaming capability is enhanced. At the same time, the differences between
the network resistance and power of vertex-pair and vertex-degree with different connection
probabilities are getting smaller.

c¢)With the increase of the shortest distance, the network resistance and power both increase,
and the current streaming capability is weakened.

The underlying reason for the above results is also studied. And in the analysis of network
resistance and power with different shortest distance, we gave a simplified formula for network
resistance, and introduced a branching factor which could be a new statistical parameters in the
analysis of complex resistor network.

More research on the local performance of different complex resistance network will be done
in our future work, such as the study of the edge-current, edge-power, vertex-current, vertex-
power, the specific form of m; = m;(s,t,d) in branch factor f = f(s,t,d). These local study
of complex resistor network can provide useful estimation of the importance of different vertex
and edge.
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