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Abstract. Thermodynamics is independent of a description at a microscopic level
consequently statistical thermodynamics must produce results independent of the coordinate
system used to describe the particles and their interactions. In the path integral formalism the
equilibrium properties are calculated by using closed paths and an euclidean coordinate system.
We show that the calculations on these paths are coordinates independent. In the change of
coordinate systems we consider those preserving the physics on which we focus. Recently it has
been shown that the path integral formalism can be built from the real motion of particles. We
consider the change of coordinates for which the equations of motion are unchanged. Thus we
have to deal with the canonical transformations. The Lagrangian is not uniquely defined and
a change of coordinates introduces in hamiltonians the partial time derivative of an arbitrary
function. We have show that the closed paths does not contain any arbitrary ingredients. This
proof is inspired by a method used in gauge theory. Closed paths appear as the keystone on
which we may describe the equilibrium states in statistical thermodynamics.

1. Introduction
The path integral method has been proposed by Feynman [1] as an alternative to the Schrödinger
equation. Today it is one theoretical tool among the most used in quantum field theory [2]. The
path integral formalism or the functional integral point of view has been extended in statistical
thermodynamics (see for instance [3]). In quantum physics this formalism has been extensively
used but due to the presence of a complex measure it is difficult to have rigorous mathematical
treatments. In contrast in statistical physics the measure is positive and the functional analysis
has a rigorous mathematical basis [2].
In the initial version of statistical physics the path integral formalism requires to solve the
Schödinger equation, to use the canonical form of the density matrix and to introduce some
mathematical tricks. Thus all the machinery of quantum mechanics is needed to calculate
thermodynamic quantities. Feynman ([1] see ” Remarks on methods of derivation” p. 295)
suggested that it must be possible to calculate more directly the thermodynamic quantities
without solving the Schrödinger equation but directly starting from the time-dependent motion
of particles. In a recent paper [4] it has been shown that it is possible to follow this route.
The trajectories of particles are quantified by the path integral formalism, only the closed paths
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have to be inspected on a time associated with a non usual equilibrium condition. In such
an approach the time is a real time and the path integral is not just a formal mathematical
trick. One interest of this route is to offer a scheme in which thermodynamic equilibrium and
irreversible processes can be treated on the same footing [4]. Schrödinger equation and density
matrix are not used. It is interesting to note that the thermodynamics of black holes can be
obtained without using all the machinery of the Einstein equations [5]. In this paper we want to
show that the thermodynamic properties usually calculated in an euclidean coordinate system
are in fact independent of the coordinate system.
In Section 2 we briefly summarize an approach recently proposed in agreement with the Feynman
remarks [4]. In Section 3 we use a general coordinate system and introduce a traditional result
associated with canonical transformations. In Section 4 we develop an approach reminiscent of
the one proposed by Fadeev and Popov [6] for gauge theories. A short conclusion is given in
Section 5.

2. Thermodynamic quantities in terms of path integrals
Feynman [3] observed that to the density matrix ρ we may associate a quantity ρ(u) = exp −Huh̄
where u has been redefined to be βh̄; β = 1

kBT
in which T is the temperature. This quantity

verifies the differential equation

h̄
∂ρ(u)

∂u
= −Hρ(u) (1)

that is formally a Schrödinger equation in which we have made the transformation it = u. This
remark implies that the partition function can be expressed in term of a path integral as it has
been done for the wave function. The partition function Q can be written [3]

Q =
1

N !

∫
dxN (0)

∫
DxN (t)exp(−1

h̄

∫ βh̄

0
H(s)ds) (2)

where xN (0) represents the set of the positions xi(0) occupied by the N particles at the time
t = 0 and xN (t) is a similar quantity but associated with the time t, DxN (t) is the path
integral measure. The calculation of path integrals has been presented in many textbooks (see

for instance [7], [8]). In order to calculate Q we introduce a time-discretization having δt = βh̄
n

as time step, n goes to infinity and δx the difference of position corresponding to δt. The path
integral measure is given by

DxN (t) =
1

C

N∏
i=1

n−1∏
j=1

dxij (3)

in which C is a normalization constant and xij represents the position of the particle i at the

time jδt, we have xi0 = xi(0) and xin−1 = xi(t− δt). In (2) we must take xi(0) = xi(βh̄) showing
that we only consider closed paths, this is associated with the fact that in traditional version
of statistical mechanics we only focus on the trace of the density matrix. The Hamiltonian is
written H(s) = K(s) + U(s) where K(s) is given by

K(s) =
N∑
i=1

1

2
m(

dxi(s)

ds
)2 =

N∑
i=1

Ki(s) (4)

and

U(s) =
N∑
i=1

U i(s) (5)

where U i(s) is the total potential acting on the particle i located at the point xi at the time s.
Written in the form (2) the calculation is performed as follows. For each particle i we focus on
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its position xi(0) fixed at the time 0 and we consider all the closed paths formed from xi(0) and
finally we integrate on all the value of xi(0).
Using the relation F = −kBT lnQ between the free energy F and Q and the thermodynamic
relation F = U − TS we obtain in terms of path integral

S = kB ln
1

N !

∫
dxN (0)

∫
DxN (t)exp(−1

h

∫ βh̄

0
[H(s)− U ]ds) (6)

showing that the entropy is determined by the fluctuations of the internal energy along the
paths these fluctuations being such as

∫ τ
0 (H(s)− U)ds ≈ h. Instead of the Boltzmann formula

in which we count a number of states here we count a number of paths.
The path integral formalism developed above corresponds to the initial traditional route. In
[4] we started on the investigation of a real motion in classical space-time [4]. We count the
closed paths explored during a time τ . If we require that τ must be such the average of energy
counted on the paths is identical to the free energy needed to create the system we find that
τ = βh̄. The time τ is a characteristic of equilibrium in no way it must be considered as the
relaxation time characterizing how a system in non-equilibrium relaxes toward an equilibrium
state. τ represents the natural unit of time and it introduces a problem of measurement for the
thermodynamic properties [4]. If a measurement is performed on a time interval smaller than τ
the result will be unpredictable due to the quantum fluctuations. With this point of view all the
equilibrium properties are calculated from a dynamic point of view but the results are identical
to those deduced via the Gibbs ensemble method.
To summarize, in this approach the time we consider is the usual time i.e. a real quantity and
we have to deal with the usual dynamics. The paths represent the particles trajectories that are
quantified via the functional integration in which the Heisenberg uncertainty relations appear.
With this approach we do not use the Schrödinger equation, this appears as a necessity if we
want to use the same formalism for describing both equilibrium states and time-irreversible
processes. Another important point of this approach is to show that the passage from statistical
mechanics to quantum physics can be analyed in term of time-irreversibility.

3. The canonical transformations
The Hamiltonian H(s) introduced in (2) and defined by (4) and (5) is given in an euclidean
coordinate system. The thermodynamic quantities ignoring a microscopic description must
be coordinates independent. Thus we have to rewrite H(s) in a general coordinate system. Of
course among all the coordinates system we must keep those preserving the investigated physics.
We decide to inspect all the coordinate systems verifying the same equation of motion. This
leads to focus on the canonical transformations [9].
To save the notations we consider a system reduced to one particle, the generalization is

straightforward. The kinetic energy (4) is now reduced to K(x, s) = 1
2m(dx(s)

ds )2 and the potential
U(x, s) is the external potential. Now we restrict x to represent an euclidean coordinate system
and we use the symbol q for a general coordinate system. Basically the motion is described via
the optimization of a Lagrangian giving rise to the Euler equations. However two lagrangians
differing by the total time derivative of an arbitrary function depending on time and position
give to the same motion. Let consider two general coordinate systems for which the positions
are referred by q and q′. Then we have for the change in hamiltonians [9]

H ′(q′, t)) = H(q, t) +
∂F (q, t)

∂t
(7)

in which F (q, t) is an arbitrary function. Now we have to calculate on the closed paths∫ τ

0
H(q′, t)dt =

∫ τ

0
[H(q, t) +

∂F (q, t)

∂t
]dt (8)
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The integral on ∂F (q,t)
∂t can be performed easily, we have∫ τ

0

∂F (q′, t)

∂t
dt = δt

n∑
j=1

F (qj , tj)− F (qj−1, tj−1)

δt
= F (q0, τ)− F (q0, 0) (9)

Thus the integration on closed paths starting from q0 introduces to a factor Λ(q0) = 1
h̄ [F (q0, τ)−

F (q0, 0)]. To derive this result we have taken into account that the path integral requires a
discretization but in this case the result is identical to the one obtained by considering continuous
variables.
Now we can consider two results obtained with two different coordinates one referred by q′ and
the second by q. We have for (2) in the case N = 1

Q′ =

∫
dq′(0)

∫
Dq′(t)exp(−1

h̄

∫ τ

0
H(q′, t)dt) (10)

Q =

∫
dq(0)

∫
Dq(t)exp(−1

h̄

∫ τ

0
H(q, t)dt) (11)

It is well know [10] that functional measure is invariant in a translation of the variables producing
a change of coordinates and hence dq0Dq(t) = dq′0Dq′(t) but with this result and (8) we transform
(10) as

Q′ =

∫
dq(0)

∫
Dq(t)exp(−1

h̄
Λ(q0)

∫ τ

0
H(q, t)dt) (12)

from which we can see that Q and Q′ are different. The closed paths induce a monodromy defined
by Λ(q0). We have to deal with something similar to a gauge theory (see for instance [10]): the
basic equations give the same physics but they contain an arbitrary function F (q, t) creating
different expressions for the same quantities. Since the physical results must be independent
of F (q, t) it must exist a degree of freedom from which the we may eliminate it. Due to the
similitude with the gauge theory it seems suited to introduce a method efficient in quantum field
theory [6].

4. Invariance on the coordinate systems
In standard quantum mechanics the expectation 〈A〉 of a given operator A is calculated via
the density matrix ρ according to 〈A〉 = Tr(ρA) where Tr(B) means that we have to take
the trace of the operator B. To calculate Tr(ρA) we need to introduce a complete basis of
orthogonal and normalized vectors. It is very well known that the trace is independent of the
basis used, to demonstrate this we use the closure relation

∑
i |i >< i| = 1 that we can consider

as a decomposition of the unity. In addition, in the demonstration of the trace independence we
perform a change in the order of the summation. Similar arguments will be used to show the
independence of the thermodynamic variables on the choice of the coordinate system. However
these arguments are implemented by a method used in gauge theory [6].
Here the decomposition of the unity wil be build via the Dirac distribution defined according to∫

δ(y − x)f(x)dx = f(y) (13)

For each value of q0 we have associated a number Λ(q0) depending on the arbitrary function
F (q, t). By changing, for instance, some parameters involved in the definition of F (q, t) we can
change its value and we assume that it can reach a value κ(q0) where κ(q0) is a given function
of q0. Using (13) for the function f(x) = 1 we get∫

δ(κ(q0)− Λ(q0))dΛ(q0) = 1 (14)
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If (14) is inserted in (12) the result is unchanged and independent of κ(q0) and we can perform
an integration on a normalized function g(κ(q0)). Now we have

Q′ =

∫
dq0dκ(q0)g(κ(q0))dΛ(q0)δ(κ(q0)−Λ(q0)) exp−1

h̄
Λ(q0)

∫
Dq(t)exp(−

∫ τ

0
H(q, t)dt) (15)

If we perform first an integration over κ(q0) we get

Q′ = Cte

∫
dq0

∫
Dq(t)exp(−

∫ τ

0
H(q, t)dt) (16)

in which the constant Cte is given by

Cte =

∫
dΛ(q0)g(Λ(q0)) exp−1

h̄
Λ(q0) (17)

The function g(κ(q0)) which indicates the distribution of κ(q0) is chosen independently of Λ(q0)
and consequently the constant Cte is independent of Λ(q0). For instance, to be illustrative we
can choose for g(x) a Gaussian distribution

g(x) = (
A

π
)
1
2 expAx2 (18)

The value of Cte is exp 1
4h̄2A

. Since the dimension of Λ(q0) is the same as h̄ we can take A = 1
h̄2

and finally Cte is just a numerical factor C = exp 1
4 .

5. Conclusion
We can say that the exact definition of the partition function is given by (16), it differs from the
traditional one by a numerical factor. But the main result is that the thermodynamic properties
are independent of the coordinate system. This is the consequence of the liberty we have to
choose the function g(x) which is independent of the arbitrary function F (q, t). One choice of
g(x) has been proposed to be illustrative. Our demonstration is inspired by the properties of the
trace of the density matrix and by the Fadeev-Popov method [6] used in gauge theory. Finally,
we may conclude that the closed paths are strongly associated with equilibrium thermodynamics.
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