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Abstract. The magnetoconductivity of bismuth is theoretically investigated on the basis
of the Kubo formula to interpret the longstanding mystery of linear magnetoresistance in
bismuth. First, the magnetoconductivity for the isotropic Dirac model is studied. It is found
that the inverse magnetoconductivity increases quadratically at low magnetic fields and is
saturated at high fields. This high field property is in contrast to that obtained by the semi-
classical theory, where the inverse magnetoconductivity keeps quadratic increase. Next, the
magnetoconductivity for the extended Dirac model, which is a realistic model for bismuth, is
studied. The inverse magnetoconductivity so obtained is not saturated, but is reduced at high
fields. Implications of present results to the linear magnetoresistivity of bismuth are discussed.

1. Introduction
In 1928, Kapitza reported that the magnetoresistance of bismuth increases linearly with respect
to the external magnetic field [1]. Next year, he further reported such a linear dependence
can be observed in various materials, which is known as “Kapitza’s linear law” [2–5]. The
linear magnetoresistance was a mystery at that time since the all existing theory predicted a
quadratic dependence at small fields and a saturating behavior at high fields. This problem
was partly solved by Lifshits and Peschanskii for the case with open Fermi surface [6]. Much
later, it was shown by Abrikosov that the magnetoresistance becomes linear at extremely high
magnetic fields, in the so-called quantum limit, where only the lowest Landau level is occupied,
by taking into account the infinite order of impurity scattering beyond the Born approximation
[5, 7]. The theory of Abrikosov seems to succeed to give a reasonable explanation for the
linear magnetoresistance on bismuth. However, it is well known that the effective Hamiltonian
of electrons in bismuth is given by the form equivalent to the Dirac Hamiltonian and the
carrier density greatly varies as a function of the magnetic field due to the charge neutrality
condition of compensated metals [8–10]. These specific features of bismuth are indispensable to
explain various properties of bismuth, such as the angle resolved quantum oscillation [8, 9] and
diamagnetism [11], but they were not taken into account in the Abrikosov’s theory.

In this work, we investigate the magnetoconductivity of bismuth by taking into account the
quantum effect of whole Landau levels on the basis of the Kubo formula [12], the Dirac dispersion,
the spatial anisotropy, and the field dependence of the Fermi energy, aiming at giving a possible
interpretation to the Kapitza’s linear law.
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2. Theory
We consider the isotropic Dirac Hamiltonian under an external magnetic field [10, 13–15]:

H =
(

∆ iγπ · σ
−iγπ · σ −∆

)
, (1)

where 2∆ is the energy gap, γ is the isotropic velocity, and σ is the Pauli matrix. π =
−i∇ + (e/c)A, where A is the vector potential. The eigenenergy of this Hamiltonian is given
by

Eiso
n,σ(kz) = ±

√
∆2 + 2∆

{(
n+

1
2

+
σ

2

)
ωc +

k2
z

2mc

}
, (2)

where the cyclotron frequency is defined as

ωc =
eB

mcc
=
eBγ2

c∆
. (3)

Even if we take into account the anisotropy of the velocity, the above isotropic model is essentially
valid only with a replacement mc → mh in Eq. (2) [9, 15, 16]. It is a remarkable characteristic
of Dirac electron system that the lowest Landau level, ELLL = En=0,σ=−1, is fixed at the initial
energy even at high magnetic fields [10]. Note that the cyclotron mass mc = ∆/γ2 is much
less than the bare electron mass, m, in the case of bismuth, e. g., mc/m ' 0.0019 for the field
parallel to the bisectrix axis [9]. This is the reason why we can reach quantum limit at relatively
low magnetic field.

The complete and normalized wave function has the form

ψ =

√
E + ∆

2E

 χu

−iγ(π · σ)χu

E + ∆

 , (4)

where χu is a wave function of free electrons under a magnetic field [13]. The matrix elements
of the velocity operator, which is given by vi = ∂H /∂ki, are calculated as

〈ψ|vi|ψ′〉 =

√
(E + ∆)(E′ + ∆)

4EE′

(
χu

iγ(π · σ)χu

E + ∆

)(
0 iγσi

−iγσi 0

)  χ′
u

−iγ(π · σ)χ′
u

E′ + ∆


= γ2

√
(E + ∆)(E′ + ∆)

4EE′

(
χu

σi(π · σ)
E′ + ∆

+
(π · σ)σi

E + ∆
χ′

u

)
. (5)

After some straightforward calculations, we obtain

〈ψ|v|ψ′〉 =
γ2

2
√
EE′(E + ∆)(E′ + ∆)

〈χu|(E + E′ + 2∆)π + i(E − E′)(π × σ)|χ′
u〉. (6)

Then the matrix elements for vx is given by

〈ψ|vx|ψ′〉 =
γ2A(E,E′)

2
√

2
〈χu|(E + E′ + 2∆)(π+ + π−)

+(E − E′)
{
(π+ − π−)σz − πz(σ+ − σ−)

}
|χu〉, (7)
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where A(E,E′) = [EE′(E + ∆)(E′ + ∆)]−1/2, π± ≡ (vx ± ivy)/
√

2, and σ± ≡ (σx ± iσy)/
√

2.
The operator π± changes the orbital quantum number n → n ± 1, while σ± changes the spin
quantum number σ → σ ± 1. The only good quantum number is j = n + 1/2 + σ, and the
operator vx changes j as j → j ± 1, namely, orbital and spin quantum number cannot be
changed simultaneously.

The diagonal conductivity σxx is given on the basis of the Kubo formula as [12, 17]

σxx(ω) =
e2

iω
[Φxx(ω + iδ) − Φxx(0 + iδ)] , (8)

Φxx(iωλ) = −T
∑
n,i,j

〈i|vx|j〉〈j|vx|i〉G (iε̃n)G (iε̃n − iωλ), (9)

where εn = (2n + 1)πT , ωλ = 2πλT (n, λ: integer). Here we introduced the effect of impurity
scattering, Γ, as iε̃n = iεn + iΓεn/|εn|. For the Green function part,

F (iωλ) = −T
∑

n

G (iε̃n)G (iε̃n − iωλ) = −T
∑

n

1
iε̃n − E′

1
iε̃n − iωλ − E

, (10)

the summation with respect to εn can be carried out as

F (ω) =
1

2πi

∫ ∞

−∞
dx f(x)

[
1

x+ ω − E′ + iΓ
1

x− E + iΓ
− 1
x+ ω − E′ + iΓ

1
x− E − iΓ

+
1

x− E′ + iΓ
1

x− ω −E − iΓ
− 1
x− E′ − iΓ

1
x− ω − E − iΓ

]
. (11)

(ωλ was analytically continued as iωλ → ω.) The contributions from the second and third terms
of Eq. (11) correspond to the “Fermi surface term”, and that from the first and fourth terms
correspond to the “Fermi sea term”.

For the interband transition, we have

Φcv
xx =

e2γ4NL

8

′∑
n,kz ,σ

[
F (ω,−En,σ, En+1,σ)(Acv

n+1σ,nσ)2mωc(n+ 1) [(En+1,σ − En,σ + 2∆) + σ(En+1,σ + En,σ)]2

+F (ω,−En,σ, En−1,σ)(Acv
n−1σ,nσ)2mωcn [(En−1,σ − En,σ + 2∆) − σ(En−1,σ + En,σ)]2

+2F (ω,−En,σ, En,−σ)(Acv
n−σ,nσ)2k2

z(En,−σ + En,σ)2
]

+
e2γ2

2
F (ω,−E0↓, E0↑)

(E0↑ + E0↓)
E0↑

, (12)

where
∑′

n,kz ,σ denotes summations with respect to n, kz and σ except for n = 0, kz = 0, σ = −1
of the valence band, and we omitted the kz dependences in energy. NL is the degrees of the
Landau-level degeneracy, NL = eB/2πc = ωc∆/2πγ2. Acv

n+1σ,nσ means A(En+1,σ,−En,σ). (“c”
and “v” abbreviate conduction and valence bands, respectively.) The first and second term
corresponds to the orbital transition, and the third term to the spin transition, which appear
also in the Wolff’s theory [13]. The fourth term is a new term only appears in the interband
transition (not appear in the Wolff’s theory). The total conductivity is calculated both from
the intra- and inter-band contributions.
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Figure 1. Inverse magnetoconductivity of the isotropic Dirac model as a function of magnetic
field, ωc/∆, for EF/∆ = 5.8, Γ/∆ = 0.02. The straight line shows B2-dependence.

3. Results
3.1. Isotropic Dirac model
The results of the inverse magnetoconductivity for the isotropic Dirac model is shown in Fig.
1 as a function of ωc/∆. Here we fixed the Fermi energy to be EF/∆ = 5.8, where EF is
measured from the center of the band gap. There are clear quantum oscillations, which cannot
be obtained by the semi-classical theory. When the Fermi energy EF touches the minimum
of the sub bands, σiso

xx shows a peak structure (appears as a dip in the plot of 1/σiso
xx ). The

peak width is widened by the impurity scattering Γ. 1/σiso
xx exhibits B2 dependence with the

exception of the quantum oscillation in the weak field region, ωc/∆ . 15. This is consistent
with the semi-classical transport theory for free electrons[18],

σsemi
xx (B) =

ne2τ

m∗
1

1 + ω2
c τ

2
, (13)

where, τ = 1/2Γ. The system reaches the quantum limit for ωc/∆ & 17, where only the lowest
Landau level is occupied. Beyond the quantum limit, 1/σiso

xx is saturated by the field. This is in
contrast to the semi-classical result, where 1/σxx keeps quadratic increase.

3.2. Model for bismuth
Next, we consider the anisotropy and the change of the Fermi energy EF according to the
“extended Dirac model”, whose energy is given as [9, 19]

Eex
n,σ(kz) =

√
∆2 + 2∆

{(
n+

1
2

+
σ

2

)
ωc +

k2
z

2mh

}
+
g′σ

2
β0

2
B, (14)

where mh is the effective mass along the magnetic field, and β0 = e/mc. This model also takes
into account the spin splitting and the shift of the lowest Landau level by introducing the g′-term
in Eq. (14) [9, 20, 21]. This model has succeeded in giving good agreements with experiments
on bismuth [9, 19]. The anisotropy is taken into account in ωc and mh. The field dependences
of EF (shown in the left panel of Fig. 2) is calculated so as to satisfy the charge neutrality
condition [9].
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Figure 2. (left) Field dependence of the Fermi energy and Landau levels Eex
0,± and Eex

1,± for
the extended Dirac model. (right) Inverse magnetoconductivity for the extended and isotropic
Dirac models at low fields.

The result of the inverse magnetoconductivity so obtained is shown in the right panel of Fig.
2 for the magnetic field parallel to the trigonal axis. Since EF does not vary so much at low
fields, the properties of σex

xx is basically the same as that of σiso
xx . At high fields, on the other hand,

EF changes drastically as EF ∝ B in bismuth due to the charge neutrality condition [8, 9] and
the effect of the g′-term becomes more relevant. Thus the properties of σex

xx becomes different
from those of σiso

xx as shown in Fig. 3. 1/σex
xx is not saturated but greatly reduced at high fields

in contrast to the saturated 1/σiso
xx . This reduction in 1/σex

xx is a precursor to the quantum limit.
For the field parallel to the trigonal axis, the second lowest Landau level, E0,+, approaches EF,
but cannot cross EF even at high fields since both EF and E0,+ increases in almost the same
way [9]. The system keeps the state just before entering the quantum limit, namely, 1/σex

xx keeps
the dip structure at high fields. Consequently, the quantum effect and the change of EF make
the behavior of conductivity completely different from that of semi-classical one.

In order to understand the behavior of magnetoresistance, we need to calculate the magnetic
field dependence of Hall conductivity, σxy(B). Moreover, we also need to estimate the
contributions not only from electrons, but also from holes for bismuth. According to the semi-
classical theory, the total magnetoresistance exhibits unsaturated ρsemi

xx ∝ B2 behavior at high
fields when the carrier numbers of electrons and holes are equal. This consequence is obtained
from 1/σsemi

xx ∝ B2 at high fields. Our result of 1/σex
xx exhibit the drastic reduction in 1/σex

xx at
high fields. Therefore, it is naively expected that the ρBi

xx will be reduced from the value o ρsemi
xx

at high fields and become close to ρxx ∝ B behavior.

4. Conclusion
We have investigated the magnetoconductivity of Dirac electrons in bismuth on the basis of the
Kubo formula. For the isotropic Dirac model, 1/σiso

xx (B) ∝ B2 at low fields, which is consistent
with the semi-classical results for free electrons. In the quantum limit, on the other hand,
1/σiso

xx is saturated. This is contrast to the semi-classical result. We have also calculated the
magnetoconductivity for electrons in bismuth based on the extended Dirac model. We have took
into account the spacial anisotropy, the spin splitting, and the field dependences of the Fermi
energy EF. 1/σex

xx ∝ B2 at low fields, whereas 1/σex
xx is drastically reduced at high fields. This

reduction in 1/σex
xx is significantly contrast to the semi-classical result, which keeps quadratic

International Workshop on Dirac Electrons in Solids 2015 IOP Publishing
Journal of Physics: Conference Series 603 (2015) 012023 doi:10.1088/1742-6596/603/1/012023

5



 1

 10

 100

 1000

 5  10  20  30  40

( σ
xx

/σ
xx

0)
-1

ωc/∆ 

σxx
iso

σxx
ex

Figure 3. Inverse magnetoconductivity for the extended and isotopic Dirac models at high
fields.

increase. Consequently, the magnetoconductivity of bismuth will be reduced from the semi-
classical value ρsemi

xx ∝ B2 toward ρxx ∝ B. We believe such a conclusion is useful to interpret
the Kapitza’s linear law in bismuth.
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