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Abstract. We study an anomalous Hall effect in the massive Dirac electron system with
broken time reversal symmetry. Using the model Hamiltonian with the spin-orbit interaction
and a split term which breaks time reversal symmetry, we calculate the energy band, the Berry
curvature and the intrinsic Hall conductivity in an analytical way. We show that the non-
zero Berry curvature appears and thus an intrinsic Hall conductivity occurs. This anomalous
Hall effect can be observed in such systems as a ferromagnetic Dirac electron system or a
ferromagnet-coated Dirac electron system.

1. Introduction
Anomalous Hall effect is a Hall effect in a ferromagnet without magnetic fields. Its mechanism
has been controversial issues [1]. The main mechanisms of the anomalous Hall effect are the
intrinsic contribution [2] which is related to the conception of Berry phase [3-5], skew scattering
and side jump scattering, and a unified theory of the issues has been revealed [6].

It has been known that unusual quantum Hall effect occurs in graphene which has a massless
Dirac Hamiltonian [7,8]. This comes from the existence of non-zero Berry phase around the
Dirac point. In addition, the quantized anomalous Hall effect occurs in a N-layer ABC-stacked
graphene system with a term which breaks time-reversal symmetry [9]. Moreover, a valley Hall
effect occurs in graphene with broken inversion symmetry. [10]

On the other hand, the topological insulators have recently been focused because of the
interesting properties of these materials [11,12]. The topological insulator has the gapless band
on the surface of a bulk insulator. This band has Dirac-like dispersion and helical spin polarized.
The quantized anomalous Hall effect also occurs in the magnetic topological insulator, which is
topological insulator doped with transition metal elements such as Cr or Fe [13-15].

Although the anomalous Hall effects in the usual dispersion systems have been well studied,
those in the linear dispersion systems like Dirac electron system have not been studied yet.
Moreover, the quantized anomalous Hall effect in N-layer graphene depends on a pseudospin
which has nothing to do with a real spin, and the magnetic topological insulator is massless
Dirac electron system. Therefore, we study in this paper the anomalous Hall effect in the
massive Dirac electron system with a real spin.

2. Method
In this paper, we discuss the anomalous Hall effect in a massive Dirac electron system. Generally,
the anomalous Hall effect occurs in the systems whose Hamiltonian contains a spin-orbit
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interaction and a split term due to the internal magnetic field [6]. Therefore, in this paper
we use the Wolff Hamiltonian [16] with an isotropic approximation. Cohen and Blount proposed
such a Hamiltonian as an effective model of the electrons in Bi [17] and later Wolff found that
this Hamiltonian can be rewritten as the 4 × 4 Dirac Hamiltonian. This model contains the
spin-orbit interaction in an essential way. In order to study the anomalous Hall effect, we add
to this Hamiltonian a split term, ∆σz. Therefore, the Hamiltonian becomes

H =

(
m+∆σz iγk · σ
−iγk · σ −m−∆σz

)

=


m+∆ 0 iγkz iγ(kx − iky)

0 m−∆ iγ(kx + iky) −iγkz
−iγkz −iγ(kx − iky) −m−∆ 0

−iγ(kx + iky) iγkz 0 −m+∆


where m represents the mass gap and we use typical set of parameters, m = 10 (meV) and
γ = 10−7 (meV m). Because the sign of a magnetic moment is opposite between conduction
and valence bands [18] , the split terms have opposite signs. Note that this split term breaks
time reversal symmetry.

The intrinsic Hall conductivity of this system is given by

σxy =
∑
n

e2

h̄

∫
dk

(2π)d
Ωn
kxky(k)f(E(k)),

where f(E(k)) is the Fermi distribution function and Ωn
kxky

given by

Ωn
kxky(k) = i

(⟨
∂n(k)

∂kx

∣∣∣∣ ∂n(k)∂ky

⟩
− (x ↔ y)

)

is the Berry curvature of the n-th band [3]. This formula is derived from Kubo formula. Although
the bands in real systems have a cutoff, the k integral is taken over all k values. When the non-
zero Berry curvature exists, the velocity becomes

vn =
∂En(k)

h̄∂k
+

e

h̄
E×Ωn(k)

where E is a electric field. This contribution from the Berry curvature known as an anomalous
velocity is related to a Hall current. In the following, we calculate the energy band, the Berry
curvature and the intrinsic Hall conductivity at T = 0 by

σxy =
∑
n

e2

h̄

∫
En(k)<Ef

dk

(2π)d
Ωn
kxky(k)

in an analytical way. Here, Ef is the Fermi energy. Note that the whole Hall conductivity has
other contributions such as the extrinsic contribution which comes from impurities.

In the same way as in the three-dimensional case, we also study the two-dimensional case
which is obtained by ignoring kz dependence. The integration in the Hall conductivity formula
is also carried out in the two-dimensional k-space.
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Figure 1. Energy Band of this system. Here k2∥ = k2x + k2y. (a) m ≥ ∆ case. (∆ = 2(meV))

(b) m ≤ ∆ case. (∆ = 15(meV)) In this case, the second- and the third-band avoid crossing.

3. Result
By diagonalizing the Hamiltonian, we obtain the energy band as

En = ±
√
m2 +∆2 + γ2k2 ± 2∆

√
m2 + γ2(k2x + k2y) (n = 1, · · · 4),

where n is the band index in descending order. Figure 1 shows examples of this band dispersion
for typical cases.

Using the eigenfunctions, we calculate Berry curvature of this model,

Ωn
kxky = ± mγ2

2(m2 + γ2(k2x + k2y))
3/2

(+ : n = 2 or 3,− : n = 1 or 4)

Opposite signs of the Berry curvature mean that the bands n = 1 and 2 (n = 3 and 4) have the
opposite signs anomalous velocity. Note that the Berry curvatures vanishes when the bands are
not split and the bands n = 1 and 2 (n = 3 and 4) are degenerate. Since the energy bands and
the Berry curvatures are symmetric with respect to energy, we consider the cases with Ef > 0
and calculate the first- and the second-band contributions in the following.

Owing to the population difference in the spin-up and spin-down electrons, the intrinsic Hall
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Figure 2. The intrinsic Hall conductivity calculated from the Berry curvature. These are the
sum of the contribution from the first- and the second-band. (a) The Ef dependence of the
intrinsic Hall conductivity. (b) The ∆ dependence of intrinsic Hall conductivity.

conductivities for the first- and the second-band occur and these are obtained analytically as

σ
(1)
xy

e2

h

= −
Ef

2πγ

√
1−

(
m+∆

Ef

)2

+
m

2πγ
arccos

(
m+∆

Ef

)

+
m

2πγ

∆√
E2

f −∆2
ln

(√
(Ef −∆)(Ef +m+∆) +

√
(Ef +∆)(Ef −m−∆)√

(Ef −∆)(Ef +m+∆)−
√

(Ef +∆)(Ef −m−∆)

)
(Ef > m+∆)

σ
(2)
xy

e2

h

=
Ef

2πγ

√
1−

(
m−∆

Ef

)2

− m

2πγ
arccos

(
m−∆

Ef

)


+ m
2πγ

∆√
E2

f−∆2
ln

(√
(Ef+∆)(Ef+m−∆)+

√
(Ef−∆)(Ef−m+∆)√

(Ef+∆)(Ef+m−∆)−
√

(Ef−∆)(Ef−m+∆)

)
(Ef > |m−∆|, Ef > ∆)

+ m
2πγ

2∆√
∆2−E2

f

arctan
(√

(∆−Ef )(Ef−m+∆)
(Ef+∆)(Ef+m−∆)

)
(|m−∆| < Ef < ∆)

σ
(2)
xy

e2

h

=
1

2π

mπ

γ

 ∆√
∆2 − E2

f

− 1

 (0 ≤ Ef ≤ ∆−m)

where σ
(n)
xy is the contribution from the n-th band.

There are two reasons why the analytic form of the intrinsic Hall conductivity changes
depending on the parameters, Ef , m, and ∆. Firstly, since the first band has a band minimum
at E = m+∆, it starts to contribute to σxy when Ef exceeds m+∆. Secondly, anticrossing of
the second band changes the range of integration when ∆ > m.

Figure 2 (a) shows the intrinsic Hall conductivity as a function of Ef . It begins to increase
at Ef = m−∆ and starts to decrease near Ef = m+∆. This is because the second-band which
has the positive Berry curvature starts to contribute to σxy at Ef = m−∆ and the first-band
which has the negative Berry curvature joins from Ef = m + ∆. Figure 2 (b) shows that the
intrinsic Hall conductivity is 0 at ∆ = 0 because the bands are not split on this occasion.
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Figure 3. The intrinsic Hall conductivity in the two-dimensional case. (a) The Ef dependence
of the intrinsic Hall conductivity. (b) The ∆ dependence of intrinsic Hall conductivity. However,
this is identical with (a).

In the two-dimensional system, the energy bands and the Berry curvatures are obtained by
replacing kz with 0. The intrinsic Hall conductivity is given by

σxy
e2

h

=


1
2
Ef+∆−m
Ef+∆ (m−∆ < Ef < m+∆,m > ∆ or ∆−m < Ef < ∆+m,∆ > m)

m∆
(Ef−∆)(Ef+∆) (m+∆ < Ef )

mEf

(∆−Ef )(∆+Ef )
(0 < Ef < ∆−m,∆ > m)

Interestingly, this formula is symmetric with respect to exchange of Ef for ∆. This is clearly
shown in Figure 3.

4. Conclusion
In this paper, we showed that the anomalous Hall conductivity occurs in the massive Dirac
electron system with a spin-orbit interaction and a split term. Unlike the magnetic topological
insulator, the anomalous Hall conductivity is not quantized. This is because the quantized
anomalous Hall effect in the magnetic topological insulator originates from the massless Dirac
fermion.

Although we only studied the system with broken time reversal symmetry in this paper, it is
interesting to study the systems in which other symmetries are broken. In the N -layer graphene
system, it has been shown that some interesting quantum phases occur [9]. In addition, a valley
Hall effect in graphene with broken inversion symmetry [10] is essentially similar to our result
in the two-dimensional case except for a kind of broken symmetry. Therefore, it is interesting
to study the system with broken inversion symmetry in the three-dimensional case.

Experimentally, this anomalous Hall conductivity will be observed in such systems as a
ferromagnetic Dirac electron system or a ferromagnet-coated Dirac electron system. In this
paper, only the intrinsic contribution was considered. Other contributions, such as the extrinsic
contribution from impurities, will be observed in experiments, so further calculation is necessary
for the extrinsic contribution. However, the result of this paper will help to identify the intrinsic
contribution by measuring the chemical potential dependence and the split gap dependence.
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