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Abstract. Motivated by the puzzling optical conductivity measurements in graphene, we
speculate on the possible role of strong electronic correlations on the two-dimensional Dirac
fermions. In this work we employ the slave-particle method to study the excitations of the
Hubbard model on honeycomb lattice, away from half-filling. Since the ratio U/t ≈ 3.3 in
graphene is not infinite, double occupancy is not entirely prohibited and hence a finite density
of doublons can be generated. We therefore extend the Ioff-Larkin composition rule to include
a finite density of doublons. We then investigate the role played by each of these auxiliary
particles in the optical absorption of strongly correlated Dirac fermions.

1. Introduction
Strong correlation has remarkable manifestations in properties of metals. Recent emergence of
the so called Dirac materials in solids has provided a new playground for condensed matter
physicists. One of the most important two-dimensional examples of Dirac materials is graphene
the low energy theory of which is described by 2+1 dimensional Dirac Hamiltonian. As far as the
non-interacting Dirac theory is concerned, the single-particle eigen-states of this Hamiltonian
are chiral which protects them from complete back scattering. Many other amazing properties of
graphene follows from the underlying Dirac nature of its free theory. On top of any free theory an
interesting theoretical question would be, what happens if some forms of interactions are turned
on. In this respect one of the most important forms of interactions are local (on-site) interactions
parameterized by the so called Hubbard U . This type of local correlations in ordinary metals
leads to interesting spin liquid followed by Mott insulating behavior when the parent metal is
at half-filling [1]. Upon doping away from half-filling the on-site Coulomb repulsion would also
lead to possible high temperature superconductivity. Given such a background for the short-
range Coulomb interactions in two dimensions, it is interesting to ask similar questions about
the Dirac matter: i.e. what would be the consequences of strong electronic correlations on the
physical properties of Dirac solids?

In the present work, we are interested in examining the role of strong correlations on the
physical properties of Dirac electrons. One of the important problems of condensed matter
systems is the optical conductivity that couples to the particle-hole channel of excitations, hence
providing information not accessible in the single-particle measurements such as angular resolved
photo emission spectroscopy (ARPES) or tunneling experiments. Recent ab-initio estimates of
the Hubbard U in graphene shows that it is remarkably strong on the scale of ∼ 10 eV, i.e.
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more than 3 times larger than the hopping amplitude t of electrons between the 2pz orbitals
of neighboring carbon atoms [2]. Therefore it is timely to approach the problem from strong
coupling side, and study the manifestations of strong correlation. In this work we employ
slave-boson method to calculate the optical conductivity of Dirac electrons of graphene at zero
temperature.

2. Slave Boson Method and Hubbard Model
Hubbard model is the canonical model to describe strong correlations in solids. This model
consists of two terms, kinetic term that in the case of graphene has a low-energy Dirac nature;
and an on-site Coulomb repulsion term of strength U . Hamiltonian of this model is shown by
(1) where t is the hopping amplitude and 〈i, j〉 implies that sites i, j are nearest neighbors.

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

ni↑ni↓ (1)

The hopping takes place on the honeycomb lattice between two different sub-lattices (A,B). In
general the Hilbert space of Hubbard model at each site has four states: empty state , two single
occupancy states with opposite spin and double occupancy. When U is infinite, the double
occupancy is forbidden and the doubly occupied configurations are prohibited by infinitely large
U . In the case of graphene, the Hubbard U ≈ 3.3t [2] and hence is not infinitely large. Therefore
all four states are allowed. A well established technique to study the Hubbard model in this
regime is the so called slave-particle method. In this work we use the slave boson formalism
to study Hubbard model in the intermediate range of U . Instead of using physical electron

operators c†i,σ one introduces auxiliary particles f †
i,σ, h

†
i and d†i . The electron creation operator

is represented by,

c†i,σ = f †
i,σhi + σd†ifi,−σ . (2)

The operators fi,σ, hi, di are associated with spinons and holons and doublons, respectively.
Spinons are particles with spin but no charge. Holons and doublons are particles without spin
but they have positive and negative charges, respectively. There is an equivalent between new
(unphysical) Hilbert space and old (physical) Hilbert space of real electrons:

h†i |vac〉 ≡ |0〉i f †
i,σ|vac〉 ≡ | ↑〉i , f †

i,−σ ≡ | ↓〉i , d†i |vac〉 ≡ | ↑↓〉i
. Since each lattice site is either empty, singly occupied or doubly occupied, the number of above
auxiliary fields satisfies a local constraint is represented by:

yi ≡
∑
σ

Nf
i,σ +Nd

i +Nh
i − 1 = 0. (3)

Substituting the slave-boson representation of electron creation operators in the Hubbard
model we obtain the following representation of the Hubbard Hamiltonian in terms of auxiliary
particles [3]:

H = −t
∑
〈i,j〉

(χ̂b†
i,jχ̂

f
i,j + Δ̂b†

i,jΔ̂
f
i,j + h.c.) + U

∑
i

d†idi (4)

where bosonic and fermionic bi-particle operators χ̂ and Δ̂ are define as:

χ̂f
i,j =

∑
σ

f †
i,σfj,σ, χ̂b

i,j = h†ihj − d†idj , Δ̂f
i,j =

∑
σ

fi,−σfj,σ, Δ̂b
i,j = dihj + hidj
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We decouple the above Hamiltonian into bosonic and fermionic hopping (χ̂) and pairing (Δ̂)
channels by using Hubbard-Stratonovic transformation and write the partition function as:

Z =

∫
Df †DfDh†DhDd†DdDχDΔDλe−

∫
dτL (5)

L =
∑
i,σ

f †
i,σ

∂

∂τ
fi,σ +

∑
i

h†i
∂

∂τ
hi +

∑
i

d†i
∂

∂τ
di +H −

∑
i

λiyi. (6)

The field λi is Lagrange multiplier that enforces the local constraint Eq. (3) and in saddle point
approximation we replace it by site-independent (mean field value) λ . As can be seen in Eq. (2),
in the enlarged Hilbert space of auxiliary particles, the physical electron is invariant under a
local U(1) gauge transformation. This internal gauge field is the glue that binds the auxiliary
particles back together to form the physical electrons. Therefore it is important to consider the
U(1) phase fluctuation of the corresponding order parameters. Within the slave-boson mean

field, the order parameters are replaced by their mean field values as Δ̂i,j → Δ and χ̂i,j → χ.
Of course they may have non-trivial dependence on the direction of the bond connecting sites i
and j. Such non-s-wave order parameters can be important in highly doped graphene when it is
doped to the M-point of the Brillouin zone [4]. But since in the present work we are concerned
with the normal state where superconducting pairing amplitudes will be assumed to be zero, we
are not concerned with these possibilities. Ignoring the superconducting order, the normal state
Hamiltonian in the slave-boson mean field becomes,

Heff = Hf +Hh +Hd + E0 (7)

Hf = −λ
∑
i,σ

f †
i,σfi,σ − tχb

∑
<i,j>,σ

f †
i,σfj,σ + h.c

Hh = −(λ− μe)
∑
i

h†ihi − tχf
∑
i,j

h†ihj + h.c.

Hd = −(−U + λ+ μe)
∑
i

d†idi + tχf
∑
i,j

d†idj

E0 = 6tNχfχb + (λ− μe)N + μeNe

In above relation N is the total number of lattice sites half of which are on sub-lattice A, and
the other half on sub-lattice B giving total N/2 unit cells. The quantity Ne is the total number
of electrons. All hopping terms between the nearest neighbors and hence from sub-lattice A to
B and vice versa. The chemical potential μe controls the total number of electrons with respect
to empty lattice, while λ forces the constraint of Eq. (3). The above equation parameterizes the
chemical potential μf = λ, μh = λ− μe, μd = λ+ μe −U in terms of two independent Lagrange
multipliers μe and λ.

3. Extension of Ioffe-Larkin composition rule in presence of doublons
Now that the Hamiltonian in the mean field approximation is decomposed into pieces containing
various auxiliary particles, we need a rule that combines the conductivity (i.e. current-current
correlation function) in different sectors and gives the conductivity of physical electrons. To
this end, we consider phase fluctuation of order parameters around the mean field saddle point
values and look at the U(1) gauge theory of the normal state. In this situation we have two
order parameters, the phase fluctuations of which are given by aij link fields as follows,

χf,b
ij = eiaijχf,b (8)
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In terms of these phase variables the Lagrangian becomes,

L = Lf + Lh + Ld (9)

Lf =
∑
i,σ

f †
i,σ(

∂

∂τ
− μf )fi,σ − tχb

∑
〈i,j〉,σ

eiaijf †
i,σfj,σ + h.c.

Lh =
∑
i

h†i (
∂

∂τ
− μh)hi − tχf

∑
i,j

eiaijh†ihj + h.c.

Ld =
∑
i

d†i (
∂

∂τ
− μd)di + tχf

∑
i,j

eiaijd†idj + h.c

in above equation ai,j is defined as [5, 6]:

(�ri − �rj).�a[(ri + rj)/2] =

∫ i

j
�a. �dr.

We are interested to study low energy physics on the Honeycomb lattice where the low energy
states is described by massless Dirac fermions [7]:

H±
p = vFγ

0�γ.�p. (10)

In above Hamiltonian τz = ± is associated with two Dirac points (K,K ′) and vF is Fermi
velocity of electrons and equals

√
3ta/2 and �p are two dimensional vectors. The matrices �γ are

given by:
γ0 = −σz , γ1 = iσy , γ2 = ±iσx ≡ iτzσx. (11)

By going to the continuum limit and considering phase fluctuations of order parameters as
internal gauge field, we can write:

Lf =
∑
σ

∫
d�r f(�r, σ)γ0(

∂

∂τ
− μf )f(�r, σ) + h̄vf

∑
σ

∫
d�r f(�r, σ)�γ.(

�∇
i
+ �a)f(�r, σ) (12)

Lh =
∑
σ

∫
d�r h(�r, σ)γ0(

∂

∂τ
− μh)h(�r, σ) + h̄vh

∑
σ

∫
d�r h(�r, σ)�γ.(

�∇
i
+ �a)h(�r, σ) (13)

Ld =
∑
σ

∫
d�r d(�r, σ)γ0(

∂

∂τ
− μd)h(�r, σ) + h̄vd

∑
σ

∫
d�r d(�r, σ)�γ.(

�∇
i
+ �a)d(�r, σ). (14)

Note that f is defined as f †γ0 and f = (fA, fB) is a spinor encoding the two sub-lattice structure
of the honeycomb lattice. Similar definition holds for holons and doublons. Finally the velocity
of three auxiliary particles are given by:

vf =

√
3taχb

2
, vh =

√
3taχf

2
, vd = −

√
3taχf

2
.

The coupling between the auxiliary particles and the internal gauge filed is of the following
form,

Lint = �Jf .�a+ �Jh.�a+ �Jd.�a. (15)
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Minimization of the above above term with respect to the internal gauge field �a gives

�Jf + �Jh + �Jh = 0. (16)

This relation is indeed very plausible. At every given site the total number of auxiliary particles
is conserved. Therefore the at a given site, there is only one of the above auxiliary particles
available. Likewise at a neighboring site to which a hopping is going to happen, another particle
is available. Therefore always a third particle (among, f , d and h particles) is missing from
the nearest neighbor hopping. Hence only two of the above auxiliary particles produce currents
which by the very constraint forces the currents to satisfy the above relation.

Now let us couple an external electro-magnetic (EM) gauge field �A. Assuming that spinons
have no EM charge, while charge of holons and doublons are +1 and −1, respectively, these
bosons interact with EM field via the following minimal substitution:

(
�∇
i
+ �a) −→ (

�∇
i
+ �a± �A). (17)

Having introduced the external EM gauge field �A, expanding up to second order in �A, and
performing the integration over auxiliary fields we obtain

Seff(a,A) =
∑
q

Πf
μ,ν(q)aμ(q)aν(−q) + Πh

μ,ν(q)[a(q)−A(q)]μ[a(−q)−A(−q)]ν

+Πd
μ,ν [a(q) +A(q)]μ[a(−q) +A(−q)]ν (18)

where Πμ,ν is current-current correlation function and is defined by:

Πα
μ,ν = tr〈Jα

μ (q)J
α
ν (−q)〉. (19)

Here α = f, h, d and q ≡ (�q, iωn). If we integrate out internal gauge field a, effective action in

terms of �A becomes,

Seff(A) =
∑
q

Πμ,νAμAν (20)

where

Π=
4ΠdΠh +ΠdΠf +ΠhΠf

Πd +Πh +Πf
. (21)

This relation arises from the fact that fermions and holons and doublons are coupled to each
others via internal gauge fields and hence they can not move independently. Although we
employed the linearized dispersion of underlying electrons on a honeycomb lattice to emphasize
Dirac nature of the electrons, but the above relation relies on the constraint imposed by the
internal gauge field and therefore it also holds when a tight-binding band picture valid over the
entire hexagonal Brillouin zone of graphene is used.

The above relation is a generalization of what is known as Ioffe-Larking composition rule to
the case where a finite number of doublons is also present. Finite density of doublons arise from
the fact that the Hubbard U is not infinitely large. In the following let us repeat the physical
argument of Ioffe and Larkin [8] to convince ourselves that the above composition rule in presence
of doublons is independent of the details of the band structure of underlying electrons. Assume
that the internal gauge fields gives rise to electric field �e. In the presence of external electric
field �E, effective electric fields for each particles are:

�ef = �e, �eh = �e− �E, �ed = �e+ �E, (22)

International Workshop on Dirac Electrons in Solids 2015 IOP Publishing
Journal of Physics: Conference Series 603 (2015) 012005 doi:10.1088/1742-6596/603/1/012005

5



as we have assumed that the EM charges belong only to holons and doublons. Current due to
each particle is given by the following equation:

�jα = σα�eα (23)

where α = f, h, d and the above relation is seen as a tensorial equation where tensor components
are not shown for clarity. Using this relation in the constraints on the currents, Eq. (16) gives
the following relation between the internal and external electric fields:

�e =
σh − σd

σf + σh + σd
�E. (24)

The physical charge current is defined as difference between doublonic and holonic currents,

�j = �jd −�jh = σ �E, ⇒ σ =
4σdσh + σdσf + σhσf

σd + σh + σf
. (25)

This conductivity relation is same as equation that is calculated in Eq. (20) and hence is not
dependent on the details of the band dispersion and holds for the low-energy Dirac as well as
the full tight-binding kinetic parts. If we consider the situation that there is no doublon in our
systems (large limit of U/t), the doublon channel is blocked and hence the conductivity σd of
doublons vanishes. Therefore in this limit the composition formula for the conductivity reduces
to the relation containing only spinons and holons contributions [9, 10].

4. Normal State
Let us now proceed by rewriting Eq (7) in the Fourier space which leads to the following normal
state Hamiltonian:

Hf =
∑
k,σ

[
f †A
k,σ f †B

k,σ

] [ −μf −tχbηk
−tχbη∗k −μf

] [
fA
k,σ

fB
k,σ

]
, (26)

Hh =
∑
k

[
h†Ak h†Bk

] [ −μh −tχfηk
−tχfη∗k −μh

] [
hAk
hBk

]
, (27)

Hd =
∑
k

[
d†Ak d†Bk

] [ −μd tχfηk
tχfη∗k −μd

] [
dAk
dBk

]
, (28)

E0 = (λ− μe)N + 6tNχfχb + μeNe, (29)

where ηk = �δ
ei
�k.�δ and summation applies on the nearest neighbor vectors. μf , μh, μd are

defined in previous section. Diagonalizing the above Hamiltonian gives the following energy
eigen-values for fermions and holons and doublons:

Ef
k,σ = −μf ± tχb|ηk|, (30)

Eh
k = −μh ± tχf |ηk|, (31)

Ed
k = −μd ± tχf |ηk|. (32)

At the mean field level where the above auxiliary particles do not interact, the free energy at a
given temperature T is given by:

F = − 2

β

∑
k,s=±

ln(1+e−βEf
k,s)+

1

β

∑
k,s=±

ln(1+e−βEh
k,s)+

1

β

∑
k,s=±

ln(1+e−βEd
k,s)+(λ−μe)N+6tNχfχb

(33)
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where s = ± stands for two branches of energy bands for each auxiliary particle. Minimizing
free-energy leads to follow Self-consistency equations:

∂F

∂λ
= 0 → 2

∑
k,s=±

f(Ek,s) +
∑

k,s=±
nB(E

h
k,s) +

∑
k,s=±

nB(E
d
k,s)−N = 0, (34)

∂F

∂χf
= 0 →

∑
k,s=±

st|ηk|nB(E
h
k,s) +

∑
k,s=±

st|ηk|nB(E
d
k,s) + 6tNχb = 0, (35)

∂F

∂χb
= 0 → 2

∑
k,s=±

st|ηk|f(Ek,s) + 6tNχf = 0, (36)

where nB(E) and f(E) are Bose-Einstein and Fermi-Dirac distribution functions, respectively.
If temperature is nonzero all of particles are distributed according to their corresponding
distribution function among their energy levels and the self-consistent solution of the above
equations determines various parameters. However in the limit of T → 0, Bose particles may
have a chance to undergo a Bose condensation that gathers them at the bottom of their energy
band. Therefore in zero temperature if holons and doublons have zero energy they could be
condensed in the bottom of their energy band that lies at �k = 0. Holons can condense when
λ = μe−3tχf . In such a case, the minimum energy of doublons becomes U−2μe. Consequently,
depending on the value of μe holons or doublons or both of them could be condensed i.e. if
μe = U/2 we are in half-filling and have particle hole symmetry and both of holon and doublon
condense, but for μe > U/2 (μe < U/2) only doubolns (holons) condense. For example if system
is doped by holes, following self-consistency equations at T = 0 becomes,

λ = μe − 3tχf , χb =
1

2
δ, χf =

1

3N

′∑
k

|ηk|. (37)

The prime in the above summation means that the sum is performed over the occupied fermionic

states and δ is number of holons per site. By substituting χf we obtain λ = t
N

′
k |ηk|.

Away from half-filling where only one of bosons condenses, the boson conductivity will be
a strong Dirac delta peak around the accessible energy ωb from the condensed momentum.
Therefore the boson conductivity will be zero away from ωb. This makes the total conductivity
of physical particles zero away from ωb which is not consistent with the experiment of Ref. [11].
Hence as far as the doped graphene is concerned, the bosons will not be in the condensed phase
as the light absorption in a wide energy range is non-zero.

5. Conclusions
For the intermediate values of U the presence of doublons are allowed and they are coupled to
the fermions and holons by internal gauge field. In the absence of pairing parameters (i.e. in
the normal state) we extended the Ioffe-Larkin composition rule to include the contributions
of doublons in the physical conductivity. We also re-derived it using a general physical
argument. We studied normal state of Hubbard model in zero temperature and showed in
this case depending on electronic chemical potential, bosons or doublons or both of them can
be condensed. We further concluded that in doped graphene, the bosons (either of holons or
doublons) can not be condensed. Therefore one must consider non-zero temperatures in order
to understand the optical absorption experiment of Ref. [11].
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