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Abstract. A new method for the simulation of 2D viscoelastic flow is presented. Numerical 
stability is obtained by the logarithmic-conformation change of variable, and a fully-implicit 
pure-streamfunction flow formulation, without use of any artificial diffusion. As opposed to 
other simulation results, our calculations predict a hydrodynamic instability in the 4:1 
contraction geometry at a Weissenberg number of order 4. This new result is in qualitative 
agreement with the prediction of a non-linear subcritical elastic instability in Poiseuille flow. 
Our viscoelastic flow solver is coupled with a volume-of-fluid solver in order to predict free-
surfaces in extrusion. 

1.  Introduction 
The numerical simulation of viscoelastic flows with free-surfaces is a relevant problem to the 

modelling of several shaping processes in the polymer industry, such as extrusion or injection 
moulding. Polymer melts are typical examples of viscoelastic materials. Such materials can store 
elastic energy, and have a memory effect. During deformations, the molecular chains get stretched and 
oriented. As a result, the constitutive behaviour of the material depends on its strain history [1]. In 
shear flows, the viscoelasticity produces a normal stress difference τxx – τyy. A typical example of a 
viscoelastic effect happening in the manufacturing industry is the extrudate swelling. Another 
viscoelastic effect is the elastic turbulence in curvilinear flows, at very low Reynolds number Re 
(below unity) [2-4]. Recently, Morozov and Saarloos [5] summarized theoretical and experimental 
evidences of the existence of a subcritical elastic instability due to normal stress effects, in planar 
flows. Linear and non-linear stability analysis [6] showed that the viscoelastic Poiseuille flow is 
linearly stable at all Weissenberg numbers, but becomes nonlinearly unstable at a Weissenberg 
number around 4, where the Weissenberg number Wi is the dimensionless quantity accounting for the 
anisotropy created by the normal stress difference: 

   ,xx xx xyWi      (1) 

The numerical simulation of viscoelastic flows has for a long time been very challenging, because 
of the so-called high Weissenberg number problem [7]. Numerical investigations show that the 
simulations are prone to numerical instability (divergence of the calculation) for Wi above the unity. 
Another numerical difficulty comes from the resolution of the Navier-Stokes equations at low Re, 
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where classical fractional-step methods lose their efficiency. In this paper, we present a numerical 
framework which avoids these two difficulties with two changes of variables: the logarithmic-
conformation representation [8,9], and the pure-streamfunction flow formulation [10,11], as described 
in the section 3. Both reformulations enhance the robustness of the simulation. 

When it comes to the modelling of free-surfaces, Lagrangian methods have the advantage to solve 
directly the position of the surface (coinciding with the position of mesh), without additional 
calculations, see for instance [12,13]. However, Lagrangian methods become difficult to use when the 
free-surfaces experience changes of topology, e.g. when surfaces split or merge. For this reason, 
Eulerian methods are more suitable in general cases. Thus, free-surface problems are typically solved 
as bi-phasic flows, where one is of the fluid phase is simply air. In the Eulerian methods, the position 
of the interface between the two phases is represented through the use of an additional discrete 
variable. We chose to use the volume-of-fluid (VOF) method [14], where the additional variable is the 
volume fraction of the two phases, which is transported with the flow. 

2.  Governing equations 
The governing equations of the viscoelastic flows consist in the continuity equation (conservation of 
mass) 

 0,  u  (2) 

and the momentum equation (conservation of linear momentum) 

 2
S ,p

t
           

u
u u u σ  (3) 

where u is the velocity vector, p is the isostatic pressure and σ the viscoelastic extra-stress tensor. The 
left hand side in the equation (3) corresponds to the inertial effects; the three terms on the right hand 
side of equation (3) are the contributions of the pressure gradient, the Newtonian viscous stress of the 
solvent, and the viscoelastic stress of the polymers, respectively. Finally, the equations of conservation 
(2)-(3) are supplemented with a constitutive model which closes the system of equations. We use a 
generic partial-differential viscoelastic model of general form 

  T P2( )
,

f

t


 


       


σ σ

u σ σ u u σ σ ε  (4) 

where f (σ) is a relaxation function, and T( ) 2  ε u u  is the strain rate tensor. Depending on the 
expression of f (σ), popular viscoelastic models can be recovered [1], see table 1. The material 
parameters ρ, μS, μP and λ are the density, the solvent viscosity, the polymer viscosity and the 
relaxation time, respectively. 
 

Table 1. Expressions of the relaxation function f (σ) in the generic 
constitutive equation (4), for different viscoelastic models. 
  

Viscoelastic model Relaxation function ( )f σ  

Oldroyd-B 1 

Giesekus  11   σ  

Linear PTT    11 tr  σ  

Exponential PTT    1exp tr   σ  

FENE-CR    
1

2
11 trL 


  σ  
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3.  Numerical framework 
The continuum problem is discretized with the finite-volume method, where the governing equations 
translate to balances of the fluxes between discrete control volumes. The fluxes are evaluated by a 
quadratic upwind interpolation scheme with flux limiters (CUBISTA) introduced by Alves et al. [15]. 
The equations are integrated in time with the two-level backward differentiation formula (BDF2). Our 
implementation of the VOF method uses the second-order accurate algorithm of Pilliod and Puckett 
[16], where the piecewise linear approximations of the interface are reconstructed with the ELVIRA 
technique, and the advection is solved explicitly by an operator split algorithm. Because of the non-
linearity, the volume fraction, constitutive and conservation equations are solved sequentially, with 
successive direct substitution iterations until a convergence criterion is reached, at each time-step. 

3.1.  The log-conformation representation 
The log-conformation reformulation of the constitutive equation was recently introduced by Fattal and 
Kupferman [8,9]. It expresses the viscoelastic extra-stress σ in the constitutive equation (4) in terms of 
the logarithmic conformation s = log(c). The conformation tensor, defined as 

 P( ) ,  c σ I  (5) 

is a measure of the extra-stress which has the important property of being symmetric positive definite, 
thus it has a real matrix-logarithm. The matrix-logarithm transformation requires the diagonalization 
of the conformation tensor, T ,c QDQ  where D is the diagonal matrix of the eigenvalues and Q is the 
orthogonal matrix containing the eigenvector as vector column. The matrix-logarithm is interpreted as 

     Tlog log ,c Q D Q  (6) 

where the logarithm log(D) is applied component-wise. The evolution equation of the log-
conformation is: 

   ( )
2 ,

f e
e

t 


     


s
ss

u s Ωs sΩ B  (7) 

where the Ω and B are pure rotation and pure extension decompositions of the velocity gradient u . 
Finally, the divergence of the viscoelastic extra-stress is recovered though the matrix-exponential of s. 
This change of variable ensures by construction the positive definiteness of the conformation tensor. 
Fattal and Kupferman also showed that the numerical instabilities at high Weissenberg numbers are 
due to poor resolution of the exponential stress growth in time, and the exponential stress profile near 
geometrical singularities [17], with quadratic approximations. In the log-conformation representation, 
such exponential growths/profiles become linear and are accurately approximated by linear and 
quadratic schemes. 

3.2.  The pure streamfunction formulation 
The main difficulty when solving the conservation equations (2)-(3) with the velocity and pressure as 
primary unknowns (u-p formulation), comes from the fact that there is no evolution equation for the 
pressure unknowns. Indeed, the pressure acts as a Lagrange multiplier of the incompressibility 
constraint which means that errors in the pressure fields directly link to errors in the conservation of 
mass. Most (if not all) viscoelastic algorithms use velocity-pressure fractional-step decoupling 
techniques, such as the SIMPLE, PISO or Chorin’s projection methods [18-20]. The decoupling is 
achieved via an approximation of the inverse of the Jacobian matrix in the system of momentum 
equations. This approximation introduces a decoupling error; e.g. for the standard first order 
fractional-step method, the dominant error terms are proportional to t Re [21]. It means the 
decoupling technique is accurate at high Re, i.e. in flows driven by gravity or inertia, such as in aero-
dynamics or hydro-dynamics problems. However, at low Re (especially below unity), the decoupling 
errors becomes very large. These flows are generally driven by pressure gradients, so that the velocity 
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and pressure fields are strongly coupled. As a result, the decoupling techniques may not be the most 
suitable. 

Alternatives to the u-p formulation solve the momentum equation in its rotational form, where a 
transport equation for the vorticity  ω u  is derived [22], e.g. the u-ω formulation and the ψ-ω 
formulation. As a result, the pressure unknowns are eliminated from the system of equations. Here we 
use a more robust formulation, the pure-streamfunction formulation, recently introduced by 
Kupferman [10] and by Chang, Giraldo and Perot [11], independently. It also uses the rotational form 
of the momentum equation, but all the kinematic unknowns are expressed in terms of a streamfunction 
ψ, defined as a vector potential of the velocity field: 

 , u ψ  (8) 

and linked to the vorticity by a Poisson equation: 

 . ω ψ  (9) 

The advantage of the pure-streamfunction formulation is that the continuity constraint is automatically 
fulfilled, by construction. In the 2D case, only one component of ψ  is non-zero:  0,0, ,ψ  

therefore the streamfunction vector reduces to a scalar field φ, where 

  , , .u v
y x

 
  

      
 (10) 

Then, the evolution equation for the streamfunction scalar reads: 

    2S ,
t


   


            

σ  (11) 

In general, this formulation is more robust and accurate as it is fully implicit and does not produce 
errors. For details about the discretization procedure of the 4th order operators, see in reference [11]. 

4.  Numerical examples 
Our solution method for 2D viscoelastic flow was implemented in Matlab. We first test our algorithm 
for the simulation of Newtonian and viscoelastic flows at very low Re in the 4:1 contraction geometry, 
without free-surfaces. The geometry is discretised using a uniform orthogonal mesh, with 40 control 
volumes on the width of the downstream channel. The no-slip boundary condition is applied at the 
walls, and the fully-developed velocity and stress profiles are imposed at the inlet. We use an Oldroyd-
B material with a viscosity ratio β = μS / (μS + μP) = 1/9. The fluid is initially at rest, and after a short 
transient response the flow establishes a steady-state solution. In our calculation, the steady-state 
solution was found stable for Wi < 4, while a hydrodynamic instability developed from Wi = 4 and 
above. This instability is not a numerical instability since the simulation does not diverge. The 
streamlines are perturbed inside the downstream channel. Oscillations of the velocity in the spanwise 
direction partially separate the stress boundary-layers from the walls, as depicted in the figure 1. The 
flow perturbation was initiated near to the re-entrant corner and later propagated inside downstream. It 
is interesting to note that the perturbation started where the streamlines have high curvatures and the 
material experiences the largest shear deformation. This is an indication that this flow instability could 
correspond to a (physical) elastic instability [5]. 

To our knowledge, simulation results of unstable flows in the downstream channel have not been 
reported in the literature. However, our onset of instability at Wi = 4 quantitatively agrees with the 
non-linear stability analysis in [6], which predicts a subcritical elastic instability in the planar creeping 
Poiseuille flow of Oldroyd-B fluid occurring at Wi around 4. In their stability analysis, a perturbation 
of a few percentages in the wall shear stress is sufficient to make the flow unstable. The subcritical  
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Figure 1. Snapshot of the streamlines, velocity and viscoelastic stress components of an 
unstable flow of Oldroyd-B material in a 4:1 contraction, at Wi = 4, Re = 10-3 and β = 1/9. 

 
elastic instability is also identified in [25,26] as an intrinsic mechanism of melt fracture defect in 
polymer extrusion, without stick-slip phenomena. The experimental investigation in [26] estimates the 
onset of the extrusion defect at Wi = 4.6±0.6, in cylindrical geometries. This empirical threshold value 
is also in good agreement with the results of our simulation. 

The viscoelastic flow solver has further been coupled with a VOF solver, in order to simulate free-
surfaces problems. Preliminary simulations of die-exit flows in planar extrusion were done. Figure 2 
shows a snapshot of the free-surface during a simulation of extrusion for a Giesekus material, with the 
parameters α = 0.02, β = 0.5, Wi = 2 and Re = 1.25·10-4. The maximum CFL number was set to 0.4. 
Only half of the domain was simulated, due to symmetry. In this particular flow, the swelling ratio of 
the planar extrudate is Λ = Hextrudate/hslit = 1.29. 

5.  Final remarks 
Historically, the high Weissenberg number problem has been addressed by developing stabilizing 

numerical techniques, adding an artificial diffusion to enhance the elliptic operator in the governing 
equations [19,20,23,24]. However, one may legitimately question whether the use of stabilizing 
techniques to avoid artificial instabilities does not produce an artificial stability. In our method, 
stabilisation techniques are not used; numerical stability is obtained by the log-conformation change of 
variable, and the fully-implicit pure-streamfunction formulation. These two reformulations increase 
the robustness of the numerical method, making it possible to simulate elastic instabilities. The 
accuracy of the results in the case of a turbulent flow is difficult to assess, because the whole range of 
spatial and temporal scales of the turbulences might not be resolved with the relatively coarse mesh. 
However, the prediction of the threshold Wi at which elastic instabilities are initiated is in good 
agreement with the previous analytical and experimental estimations. Further investigations need to be 
done on the critical amplitude of perturbation that triggers the subcritical elastic instability. 
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