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Abstract. Reliability studies of electronic parts prevalently involve FEM simulations of solder 

joints under service conditions. However, simulations performed with classical continuum 

mechanics lead to strain singularities at the surface of material transitions. In consequence, the 

desired independence of the results from mesh size can usually not be achieved. Therefore, we 

propose a novel version of strain gradient elasticity which consequently removes strain 

singularities. Our approach shows similarities to a strain gradient theory which was developed 

already in the 1960s. But in our version of the theory it is required that the stress tensor of 

equilibrium states is always symmetric. This approach is implemented in the commercial FEM 

code ABAQUS through user subroutine UEL. Thus, it is demonstrated that in the new 

approach mesh convergence is achieved. Furthermore, simulations for solder joints of different 

sizes predict a mechanical size effect in the sense “smaller is stronger”. 

1. Introduction 

The reliability of solder joints is a major issue of microelectronic industry. Lifetime models are usually 

based on Finite Element simulations revealing the stresses and strains observed in the constituent 

materials under service conditions. Due to the permanent miniaturization in microelectronics, the 

material properties of small scaled structures become increasingly important. It is well known that 

properties of materials in small dimensions cannot simply be deduced from the behaviour of bulk 

material. However, commercial Finite Element codes do not include a description of this size-effect. 

Moreover, the desired independence of the results from the mesh size can often not be achieved in the 

vicinity of material transitions at the sample surface. In order to solve these problems we propose a 

novel version of strain gradient elasticity which is implemented in the FEM code ABAQUS through 

user subroutine UEL. Approaching a microscopic length scale, the theory predicts a pronounced size-

effect in the sense “smaller is stronger”. Furthermore, mesh convergence is achieved by removal of 

stress singularities. 

An earlier version of strain gradient elasticity [1, 2] was based on a publication of E & F Cosserat 

[3] who developed a theory of a three-dimensional continuous solid where every material point has six 

degrees of freedom. The additional degrees of freedom were microrotations which were considered 

supplementary to the displacements. The forces conjugated to microrotations were called couple 

stresses. This led to an enriched version of continuum mechanics which may for instance be applied to 

the propagation of acoustic waves in a crystal [4]. Within couple stress theory the stress tensor was 
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treated as asymmetric tensor. In equilibrium the torque arising from asymmetric stresses was 

compensated by the torque of couple stresses. Mindlin and Tiersten suggested [1] that couple stress 

theory may be utilized to evaluate size effects. They calculated the stress concentrations around 

spherical and cylindrical cavities in a field of simple tension. Thereby, it was found that the stress 

concentrations at small cavities were reduced in comparison to larger ones. Mindlin [2] related the 

microrotations to a bending of the microstructure. Further, the bending was related to a curvature 

which resulted from the strain gradient. In this way constitutive equations were obtained where the 

microrotations were no longer independent from the displacement field. Nevertheless, the stress tensor 

was still treated as asymmetric tensor. Sternberg and Muki [5] used this theory to calculate stress 

concentrations at the tip of a sharp crack. In fact, singularities were found for sharp cracks and similar 

geometries [6]. We here suggest a modification of this theory which leads to a removal of strain 

singularities. 

2. A new version of strain gradient elasticity 

We propose a theory of strain gradient elasticity which does not emerge from an enriched theory of 

continuum mechanics. This means that the degrees of freedom considered here are just the 

displacements. Rotations may only arise according to the polar decomposition of the deformation 

gradient tensor. In consequence, the stress tensor of our theory is symmetric in static equilibrium. 

Thus, the elastic energy writes as 

 

 W = ½   
V

ijkijkijij  dV    with  µijk = B ijk,            (1) 

where summation is carried out over repeated indices. The Cauchy stress ij is related to the linear 

strain ij by Hooke’s law. ijk are the strain gradients ∂
2
ui/∂xj∂xk, where ui are the displacements and xi 

are the coordinates. µijk are higher order stresses related to strain gradients. The proportionality 

constant B is called bending modulus and has the dimension of a force. The existence of higher order 

stresses is explained by the fact that the correlated strain gradients lead to a bending of the crystal 

lattice. Since any perturbation of the lattice symmetry increases the energy of the system, stiffness 

against bending occurs. Our constitutive equation (1) represents the simplest approach of two-

dimensional isotropic strain gradient elasticity. It should be noticed that this expression for the elastic 

energy fulfils the requirement of invariance with respect to rotation of the coordinate system.  

3. Experimental results for the strain distributions observed in solder joints 

Every material model developed for Finite Element simulations should be validated by comparison 

with experiments. However, there are some details where the agreement between theoretical 

predictions and test results cannot easily be achieved. A typical example is provided by specimens 

with a transition of materials at the sample surface.  

 
Figure 1. Schematic picture of the sample. Plot of the von Mises strain for a 404 µm thick 

solder gap at a tensile stress of 36.1 MPa. 
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In this case, the stress singularities predicted by classical continuum theory are not confirmed 

experimentally. In fact, the discrepancy between experiment and theory is not restricted to an 

infinitesimal region where the singularity should occur theoretically. Instead, deviations between 

model predictions and observed strain fields are also found in the neighbourhood of the critical region. 

Tensile tests were performed with dumbbell shaped samples as depicted in figure 1, schematically. 

The specimens consisted of Sn-3.5Ag-0.7Cu solder gaps with cross sections of 3 x 2 mm
2
 and pieces 

of 99.9% pure copper base material. The soldering process was carried out in a commercial reflow 

furnace using a suitable temperature profile. The samples were exposed to uniaxial tensile stress and 

the deformation of the solder joint was monitored with digital image correlation (DIC). The natural 

surface of the specimens provided a fine speckle pattern which was appropriate for high resolution 

DIC measurements. A plot of the von Mises strain showing the strain distribution of a 404 µm thick 

solder gap at a tensile stress of 36.1 MPa is shown in figure 1. The results of the contour plot along an 

indicated line between two points with white markings are displayed in the x-y plot on the right. 

4. Finite Element Analysis 

4.1 Simulation with the classical continuum theory 

Three dimensional elasto-plastic simulations were performed for solder joints using cubic element 

shapes. Thereby, the element size was stepwise reduced. In consequence, the material transition 

between copper and solder led to the characteristics of a strain singularity within the solder material. 

At the beginning of mesh refinement the agreement between experiment (see figure 1) and simulation 

(see figure 2) improved until the best possible agreement was achieved. Thereafter, further mesh 

refinement deteriorated the results insofar as the strain maximum of the simulation exceeded the 

experimental values. Figure 2 shows two simulations performed with the material model of reference 

[7] using material parameters for Sn-3.5Ag-0.7Cu. Due to symmetry conditions, only 
1
/8 of the sample 

was simulated. The element sizes used were (a) 28.86 µm and (b) 15.5 µm. In the latter case the mesh 

size was already too fine to capture the experimentally measured strain distribution at a tensile stress 

of 36.1 MPa: 

 

 

Figure 2. Plot of the plastic equivalent strain. Element size (a): 28.86 µm, (b): 15.5 µm 

4.2 Implementation of strain gradient elasticity in ABAQUS 

The theory of strain gradient elasticity defined in equation (1) is now implemented in the commercial 

software ABAQUS through user subroutine UEL. The elements used are 9-node squares consisting of 

isoparametric 4-node subelements as depicted in figure 3. 
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Figure 3. (a) left: 9-node elements consist of 4 node subelements which are indicated by italic 

     numbers. (b) right: Subelements are isoparametric 4-node squares. 

 

The interpolation functions for the displacements used on the subelement level are [8]: 

 

 U = ¼ (1–g)(1–h)U1 + ¼ (1+g)(1–h)U2 + ¼ (1+g)(1+h)U3 + ¼ (1–g)(1+h)U4  (2) 

 

where g and h are the coordinates of the isoparametric space and U1, U2, U3 and U4 are the 

displacement vectors of the nodes 1, 2, 3, and 4, respectively. The strains are calculated at integration 

points which are located in the middle of the subelements. Further, the strain gradients 112 = 121 and 

212 = 221 are obtained by differentiating the interpolation functions for the displacements in the 

global coordinate system twice at the integration points. However, the strain gradients 111, 122, 211 

and 222 may not adequately be determined within subelements. Instead, they are derived at the level 

of the entire element by comparison of the strain components of neighbouring subelements.  

Next, the residual nodal forces related to stresses and higher order stresses are applied according to 

the principle of superposition. Higher order stresses are always counteracting the deformation 

introduced by the corresponding strain gradients. The directions of the nodal forces are illustrated in 

figure 4. The values of nodal forces are obtained by the condition that the work done by external 

forces equals the elastic energy stored in the element. In the case of 112 = 121 this leads to the 

equation 

 

 F1,x = – F2,x =  F3,x = – F4,x = – B 112 – B 121 (3) 

          
Figure 4. Directions of residual nodal forces. (a) left: 112 = 121, (b) middle: 111 and (c) right: 122. 

 

The case of 212 = 221 is analogous to 112 = 121. Further, one gets for 111  

 

 F1,x = F2,x = – B 111
(12)

,  F3,x = F4,x = – B 111
(34)

,    

 F5,x = 2  B 111
(12)

,  F6,x = F8,x = – B (111
(12)

 + 111
(34)

),  

 F7,x = 2 B 111
(34)

     and F9,x = 2 B (111
(12)

 + 111
(34)

),     (4) 
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where the superscript (ij) indicates that this gradient was obtained by comparison of subelements i and 

j. The case of 222 is analogous to 111. Further, one obtains for 122: 

 

 F1,x = F4,x = – B 122
(14)

,  F2,x = F3,x = – B 122
(23)

,   

 F5,x = F7,x = – B (122
(14)

 + 122
(23)

), F6,x =  2 B 122
(23)

,    

 F8,x = 2 B 122
(14)

  and   F9,x = 2 B (122
(14)

 + 122
(23)

).       (5)   

 

The case of 211 is again analogous. 

In strain gradient elasticity, it is necessary to fulfil boundary conditions for the strains at the 

borders of neighbouring elements. This problem is solved here with an overlapping mesh technique as 

illustrated in figure 5.  

 
Figure 5. Boundary conditions for strains are solved with use of an overlapping mesh technique. 

 

This mesh technique involves the definition of 6-node elements at the sample boundary. In addition, 

also symmetry elements were defined by assuming virtual nodes which are mirrored at symmetry 

lines. Since the whole sample is meshed twice, the values for Young’s modulus and bending modulus 

are halved at the element level in order to get the right values for the complete model. The main 

advantage of the overlapping mesh technique compared to other methods satisfying strain boundary 

conditions is that we obtain a linear system of equations which may be solved precisely.  

4.3. Simulation of solder joints with strain gradient elasticity 

In order to prove mesh convergence, we first apply the theory to a simplified model of a solder joint 

where only the solder material is deformable while the base material is treated as rigid solid. A sketch 

of the sample and the boundary conditions may be seen in figure 6 (a). The sketch represents ¼ of a 

sample with 1.5 mm length and 100 µm thickness. The upper line of the model is fully constrained 

while the bottom line is shifted 20 nm downwards. At the left side of the model and along the bottom 

line symmetry conditions were applied. Figures 6 (b) and (c) show that the contour plots for the von 

Mises stress [MPa] are nearly independent of the mesh size. For the simulations, a bending modulus of 

B = 7.416 N was assumed. 

 

Figure 6. (a) sketch of sample and boundary conditions. (b) right sample end,  subelement mesh 

size of 1 µm. (c) subelement mesh size of 0.5 µm. 
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Figure 7 shows a more realistic model of a solder joint where solder and base material were both 

simulated as deformable bodies. The comparison of figures 7 (a) and (b) with solder gap dimensions 

of 1.5 x 0.4 mm
2
 and 0.75 x 0.2 mm

2
, respectively, demonstrates the influence of the size effect in the 

sense “smaller is stronger”. In both cases the average strain along the tensile direction was the same, 

but the maximum of von Mises stress [MPa] at the material transition is reduced for the smaller 

sample. Therefore, the smaller sample is expected to carry higher tensile stresses when loaded until 

fracture. In the simulations it was assumed that the bending moduli of copper and solder are 

proportional to the Young’s moduli of these materials. 

 

     

Figure 7. Samples with dimensions of 1.5 x 0.4 mm
2
 (left) and 0.75 x 0.2 mm

2
 (right), 

respectively. The material transition at the surface is shown in magnification. 

5. Summary and conclusions 

The modelling of solder joints within classical continuum mechanics leads to a strain singularity at the 

surface of a material transition. In consequence, the simulation results are not independent from the 

mesh size. This problem was solved with strain gradient theory. Our approach of strain gradient 

elasticity is similar to a theory proposed by Mindlin in the 1960s. However, we require that the stress 

tensor of static equilibrium must be symmetric. In consequence, the strain singularity at the surface of 

the material transition was removed and independence of the results from the mesh size could be 

achieved. Moreover, the theory predicts a size effect in the sense “smaller is stronger”. Future work on 

this topic shall include 3-dimensionality, plasticity and time dependent behaviour.  
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