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Abstract. Equations of hydro-geo-mechanics in filtrating porous media with porous variable-
mass skeleton are examined. Variation of skeleton mass occurs due to heterogeneous chemical 
reactions. Regularities of mass transfer and deformations in such kinds of media are analyzed. 
Peculiarities of obtaining of rheological relations are investigated. A new approach to obtain 
rheological relations is proposed. Numerical simulations in order to verify obtained model are 
performed. 

1.  Introduction 
Hydrogeomechanical models are important for solution of various problems in hydrogeology, 
hydrogeoecology, oil production and geophysics. Main modern concepts of the hydrogeomechanics 
are presented, for example, in [1, 2]. Oil depletion on some of Russian oil fields necessitates 
formulating models that take into account the variation of the stress-strain state of the rock mass 
caused by chemical interactions between components of underground fluid and the material of the 
porous skeleton to perform effective enhanced oil recovery. Those models are also essential in 
problems of hydrogeology, such as filtration of solutions in clay layers, suffosion processes and karst 
processes. 
    Above-mentioned chemical interactions usually cause the variation of the mass of the porous matrix 
[3]. That is why it is important to perform an additional research on the influence of this variation on 
rheological relations, which are required to obtain a closed model of deformations of filtrating porous 
media. 
    It is also necessary to perform systematic development of main equations of underground mass-
transfer in this case. Whereas those questions did not receive exhaustive explanation in specialized 
literature, it makes sense to obtain required equations and examine most important applications. 

2.  Mathematical model 

2.1.  Mass balance equations of porous skeleton and percolating liquid 
First, it is essential to develop set of equations of filtration in a deformable porous medium with 

porous variable-mass skeleton. From the definition of the volume strain of the porous medium  : 

0 0( ) /V V V         (1) 

    Assuming values of   are small, we can obtain the following ratio: 
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0 expV V        (2) 

V is the representative volume of porous medium, lower index "0" stands for initial values in the zero 
time. Therefore, for the mass of the porous medium we have: 

0(1 ) exps sM m V        (3) 

Where: s  is the density of the solid phase; m is the porosity of the rock. Last equation was 
differentiated with respect to time.  

(1 ) (1 )
(1 )s s
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    Mass balance of the solid material of the porous skeleton is described by the equation 

[(1 ) ] / div[(1 ) ] .s sm t m j      W     (5) 

    Here W  is the velocity of the solid phase; j denotes the source/drain of the mass of the porous 
skeleton caused by interface interaction. The porous skeleton is assumed to loose its mass during 
interface interaction, so hereinafter j will represent the drain of the mass. The mass of the material of 
the porous skeleton in the representative volume there can be defined as 

(1 )s s s sV m V M         (6) 

    Here sV  is the volume of the solid phase in the representative volume. Drain in the equation (5) is 
the loss of the mass of the porous skeleton caused by processes like dissolution, leaching or suffosion. 
It can be written as 

1 sM
j

V t


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       (7) 

    From the equation (5), after the expanding of derivatives we have 

(1 ) (1 ) div grad[(1 ) ]s
s s s

m
m m m j

t t

   
       
 

W W    (8) 

Taking into account the equations (4) and (7) and assuming the last member of the (8) to be the second 
order infinitesimal: 

/ divt   W       (9) 

    The last assumption is explained in the traditional way of the poromechanics [4]. From the 

Terzaghi's Principle 
fP p  , where P  is the external load, 

f  is the effective stress, and p  is 

the water pressure in pores, it follows that grad gradf p    if grad 0P  . Since the porosity of 

the rock m  and the density of the solid phase s  are functions of 
f  and p  and taking into account 

the last equation it follows that grad[(1 ) ]sm W  from the (7) is in proportion to gradpW . 

According to the Darcy's law, this member is also in proportion to the product of the velocity W  and 

the filtration velocity q . Values of velocities in examined processes are relatively low, so the second 
degree of the velocity can be ignored as infinitesimal value [4]. 
    Mass balance of the dissolving fluid in saturated rock is described by the equation: 

( ) / div( ) 0.m t m    V     (10) 
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Here   is the density of the fluid, V  is the velocity of the fluid. Relative velocity of the fluid in rock 

(filtration velocity) is ( )ms q V W . Then, from the equations (9) and (10), we have: 
/ / div( ) div( ) 0.m t m t m          q W    (11) 

    After transformation of the last equation, while grad , grad( )m q W  are considered 
infinitesimal values, it leads to the following equation: 

1 / / div / 0.m t m t m t            q    (12) 

Combined with (4) the equation (12) gives the following expression: 

1 1 (1 )
[ (1 ) ] div .s s

s
s

m M
m m

t t t M t

        
    

   
q    (13) 

It is obvious from /s s sM V   that: 
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    Expanding the derivative in the right side and taking (13) into the account: 

1 (1 )
(1 ) div .s
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m V
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The right side of (15) can be expressed as: 

(1 )
(1 )s

s

m V
m

V t t

  
 

       (16) 

Here   is the volume strain of the skeleton material (sum of the diagonal elements of the strain 
tensor). Then (15) can be written as: 

1(1 ) div (1 ) .m m
t t t

     
    

  
q     (17) 

    Water is a slightly compressible fluid, so first member in the left side of (17) can be neglected: 

div (1 ) .m
t t

  
  

 
q      (18) 

Time integration of the last equation gives following result: 

0 0

div (1 ) .
t t

d m d
t

  
    

 q      (19) 

Partial integration of the right side leads to the equation: 

0 0

div (1 ) .
t t m

d m d
t

    
     

 q     (20) 

    Using the equation (4) for the time derivative of the porosity and (14) for the member 
1(1 ) /s sm t     we can transform (20) to the following equation: 
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0 0

div (1 ) (1 ) (1 ) .
t t

d m m m d
t t

                   q    (21) 

    It is obvious that    so for the last member of the right side of (21) it is true that: 

0 0

(1 ) (1 ) (1 ) (1 )
t t

m m d m m d
t t t t

                                        (22) 

    Last integral contains time derivatives of the squares of   and   so it can be neglected. Therefore, 
finally we receive: 

0

div (1 ) .
t

d m      q      (23) 

    The obtained equation has clear physical sense: total strain of the porous rock is made up of two 
terms. The first term is the water that was forced out during the filtration. The second term is 
deformation of the porous skeleton. 

2.2.  Rheological relations for the filtrating porous media with mass-variable porous skeleton 
    Usually rheological relations are obtained from the expression for the free energy of the porous 
medium [1]. Dissipation caused by chemical reactions is not included in this approach, and that is why 
it can hardly be applied in our case. In order to obtain rheological relations we consider that solid 
skeleton is elastic, then from the [5, 6] we have: 

( ) ,
2( ) 2
3 ii

i

s
ij ij ijK G G              (24) 

ij  is the strain tensor of the skeleton, G is the shear modulus. In one-dimensional case, vertical 

compressive stress zz  can be expressed as: 

( ) 4( )
3

s
zz K G         (25) 

Denoting
4

( )
3

K G   , we can write (23) as: 

( )

0

div (1 ) .
t

s
zzd m   

 
     

 
 q     (26) 

From the definition of actual stresses [5], the right side of (26) can be written as: 

( )(1 ) s
zzm P mp         (27) 

From the Terzaghi's Principle and (27), it follows that: 

0

, div (1 ) .
t

f d m p       q     (28) 

The first equation is the rheological relation for the volume strains of the filtrating medium. 
Shear deformations obviously coincide with deformations of the porous medium, so rheological 
relations can be written as: 
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2( ) 2
3

f
ij ij ijK G G           (29) 

    Introducing the porosity coefficient / (1 )e m m   and differentiating last equation of the system 
(28) with respect to time, we receive the equation for the pressure in the filtrating porous medium with 
mass-variable porous skeleton: 

(1 ) / / divm p t p m t          q     (30) 

    If the porosity is constant, this equation turns into the equation of the filtrational consolidation of 
the porous medium with the porous skeleton of constant mass. This equation is widely used in civil 
engineering [7]. 

3.  Results and Discussion 

3.1. Numerical simulation of filtrational dissolution   
When the density of the solid phase is constant during the chemical interaction, the following set of 
equation can be written: 

  1
0/ 1 / [ (1 )] /sm t m t V V t             

/ / div 0m t m t       


,   
1 ( )k p gz     


   (31) 

   1
0/ [ (1 )] / / divsmc t V V t mc t D c c             


, 

1
0 0 0[ (1 )] / ( ) ; , , constk

sV V t c c k c         

This set also includes the equation for the concentration of active component in the solution. 

    Here c is the concentration of the skeleton material; k  is the permeability coefficient;   is the 
viscosity of the filtrating fluid. The viscosity of the solution is constant; the permeability is dependent 
on the porosity in compliance with the Archie's law [1].  
    First we performed a comparison with one-dimensional analytical solution [10] to verify results of 
the numerical simulation. The analytical solution was calculated with the same parameters as the 
numerical solution above. 
    The results of the comparison are presented below. Graphics represent the dependence of the 
correspondent value on distance to the borehole (in meters). The dash line stands for numerical 
solution. 

 

 

Figure 1. Distribution of the concentration of the 
dissolved material in the fluid phase.  Figure 2. Distribution of the porosity 
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3.1.  Simulation of injection of dissolving fluid  
We performed three-dimensional numerical simulation of an injection of dissolving agent into 
homogeneous porous layer with vertical borehole as an example of the real physical problem. The 
carbonate rock was considered as the layer, water was considered as the dissolving agent. Data for 
speed of dissolution, solubility and other parameters were taken from [8]. 
    Implicit finite difference scheme with regular computational grid was used to perform discretization 
of the (31). Simulated area had dimensions 100x100x40 meters, dimensional step was 2 meters, time 
step 10 seconds. Due to the large size of the area, PETSc solver was used to perform efficient parallel 
computations on those big systems [9]. GMRES method in combination with LU preconditioner 
showed the best performance for our case. This method showed good convergence in studied case. 
The residual was set to 10-8. 
    Visualization of obtained results was performed in ParaView open-source software. (Contributors: 
National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-
Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories 
(SNL), Los Alamos National Laboratory (LANL), Jean-Loup Gailly and Mark Adler (gzip library)). 
    We performed calculations with different configurations and properties of the clot. Permeability in 
the layer for one of the tests is presented on Fig. 1. Dark area stands for low permeability region, 
bright area designates extremely high permeable channel, which has a low permeable gap.  
 

 

 

Figure 3. Permeability of the layer. Test configuration. 
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Figure 4. Distribution of concentration. Dark area designates the expansion 
of the injected fluid 

 
 
 

 

Figure 5. Distribution of porosity. Bright area is the region with larger 
porosity 

 

4.  Conclusion  
New approach to the derivation of equations of the underground mass transfer for filtrating porous 
medium with the variable-mass skeleton is proposed. Obtained equations can be used to solve 
important practical problems, which require taking into account variations of the stress-strain state of 
the rock mass. Those variations are caused by chemical interactions between components of the 
underground fluid and the material of the porous skeleton. The applicability domain of the model 
includes problems of enhanced oil recovery, simulation of filtration of brines through clay layers, 
simulation of suffosion and karst processes. 
    Rheological relations for saturated porous media were obtained in the same way as equations of 
mechanics of continuum for solid body with dislocations [11,12]. Tensor of dislocational polarization 

is introduced in that method. Its analog in our case is the integral 
0

div
t

d q  in (19) and other 
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equations. Fluid in pores is isotropic, so the tensor is reduced to the contraction. Our approach gives an 
opportunity to obtain rheological relations for saturated porous media in the new way and to avoid 
some difficulties of the traditional method. 
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