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Abstract. We briefly summarize our recent results on universal spacetimes. We show that
universal spacetimes are necessarily CSI, i.e. for these spacetimes, all curvature invariants
constructed from the Riemann tensor and its derivatives are constant. Then, we focus on
type III universal spacetimes and discuss a proof of universality for a class of type III Kundt
spacetimes. We also mention explicit examples of type III and II universal spacetimes.

1. Introduction
In the contribution [1] in this volume, we have introduced universal spacetimes obeying the
following definition [2]

Definition 1.1. A metric is called universal if all conserved symmetric rank-2 tensors
constructed from the metric, the Riemann tensor and its covariant derivatives of arbitrary order
are multiples of the metric.

We have argued that universal metrics solve the vacuum equations of all theories of gravity
with the Lagrangian of the form

L = L(gab, Rabcd,∇a1Rbcde, . . . ,∇a1...apRbcde). (1)

In general, it seems too difficult to study universal spacetimes in arbitrary spacetime dimension in
full generality. However, employing the algebraic classification of the Weyl tensor [3] (see also [4]
for a recent review) leads, in particular for types N and III, to considerable simplification of the
problem and allows us to prove universality for various classes of metrics.

In [1], we summarized the main results of [5] for type N universal spacetimes. Here, let us
briefly present further results on universal spacetimes (for details see [5]).

First, in section 2, we describe the main points of the proof of the following theorem.

Theorem 1.2. A universal spacetime is necessarily a CSI spacetime.

CSI (constant curvature invariant) spacetimes are spacetimes that have all curvature
invariants constructed from the metric, the Riemann tensor and its derivatives of arbitrary
order constant, see e.g. [6].

Then, we discuss type III spacetimes. Although we expect that type III universal spacetimes
are necessarily Kundt, in contrast to the type N case, we cannot use Theorem 1.2 to prove this
statement in full generality and in [5], we provide a proof only in the “generic” case. Thus, in
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section 3, we focus on the sufficient conditions for universality. We identify a universal subclass
of type III Kundt metrics1

Theorem 1.3. Type III, τi = 0 Einstein Kundt spacetimes obeying

CacdeC
cde
b = 0 (2)

are universal.

Finally, in section 4, we present explicit examples of type III and type II universal metrics.

2. Universal spacetimes are CSI
Let us here briefly summarize the main points of the proof of the theorem 1.2.

Let us consider the Lagrangian (1) containing covariant derivatives of the Riemann tensor
up to a fixed p. In [7], it has been shown that by varying the action, one arrives at the field
equations

−T ab =
∂L

∂gab
+ EacdeR

bcde + 2∇c∇dEacdb +
1

2
gabL, (3)

Ebcde =
∂L

∂Rbcde
−∇a1

∂L

∂∇a1Rbcde
+ · · ·+ (−1)p∇(a1 · · · ∇ap)

∂L

∂∇(a1 · · · ∇ap)Rbcde
,

where T ab is the associated conserved tensor.
Now, let us consider any polynomial invariant I and let us assume that it contains derivatives

of the Riemann tensor of orders at most p. By [7], we can assume it is of the form

I = I[gab, Rabcd,∇a1Rbcde, ...,∇(a1...ap)Rbcde].

Let us consider the (infinite) series of Lagrangians L = In, n = 1, 2, 3, .... By variation, we get a
conserved tensor T [n]ab for each n. For universal spacetimes, traces of T [n]ab are constant. By
studying the explicit forms of the corresponding expressions [5], one arrives at a conclusion that
I has to be a constant and since I is an arbitrary curvature invariant it follows that universal
spacetimes are CSI.

3. Type III universal spacetimes
Type III spacetimes by definition [3, 4] admit a multiple Weyl aligned null direction, mWAND,
`. Let us complete a frame with another null vector n and n− 2 spacelike orthonormal vectors

m(i) with the only non-vanishing products being `ana = 1, m(i)am
(j)
a = δij (coordinate indices

a, b, . . . = 0 . . . n− 1, frame indices i, j, . . . = 2 . . . n− 1).
In an appropriately chosen frame, the Weyl tensor for type III spacetime reads [3, 4]

Cabcd = 8Ψ′i `{anb`cm
(i)
d } + 4Ψ′ijk `{am

(i)
b m

(j)
c m

(k)
d } + 4Ω′ij `{am

(i)
b `cm

(j)
d }, (4)

where the frame components satisfy Ψ′i = Ψ′jij , Ω′ij = Ω′ji, and Ω′ii = 0 and for an arbitrary
tensor Tabcd

T{abcd} ≡
1

2
(T[ab][cd] + T[cd][ab]). (5)

As discussed in [5], for type III Einstein spacetimes, the symmetric rank-2 tensor

Sab ≡ CacdeC cde
b (6)

is conserved. While for type N, Sab vanishes identically, for type III Einstein spacetimes, it
is in general a boost weight -2 tensor proportional to `a`b. Therefore, for type III universal
spacetimes, we have an additional necessary condition (2).

1 However, note that other type III Einstein Kundt spacetimes may also exist.

Spanish Relativity Meeting (ERE 2014): almost 100 years after Einstein’s revolution IOP Publishing
Journal of Physics: Conference Series 600 (2015) 012066 doi:10.1088/1742-6596/600/1/012066

2



3.1. Main points of the proof of the theorem 1.3
The key intermediate result proven in [5] is that

Proposition 3.1. For type III Einstein Kundt spacetimes, the boost order of ∇(k)C (a covariant
derivative of an arbitrary order of the Weyl tensor) with respect to the multiple WAND is at
most −1.

Proof of this result relies on the precise form of various Bianchi and Ricci identities [8, 9].
A direct consequence of proposition 3.1 is that

Lemma 3.2. For type III Ricci-flat Kundt spacetimes, a non-vanishing rank-2 tensor
constructed from the metric, the Weyl tensor and its covariant derivatives of arbitrary order
is at most quadratic in the Weyl tensor and its covariant derivatives.

We find that for type III Ricci-flat Kundt spacetimes, for which the FKWC basis [10] of
rank-2, order-6 Weyl polynomials consists of

F1 ≡ CpqrsCpqrs;ab, F2 ≡ Cpqrs ;aCpqrs;b, F3 ≡ Cpqr a;sC
;s

pqrb , (7)

F1 and F2 are in general non-vanishing. In our case, F1 and F2 are conserved and thus, in
general, type III Ricci-flat Kundt spacetimes are not universal. However, both F1 and F2 vanish
for τi = 0. In this case, a rather technical proof [5] allows us to arrive at the theorem 1.3.

4. Kundt spacetimes
Since all universal spacetimes we have discussed belong to the Kundt class, let us briefly discuss
Kundt metrics. Kundt spacetimes are spacetimes admitting a null geodetic vector field ` with
vanishing shear, expansion and twist. In appropriately chosen coordinates,

`a;b = L11`a`b + τi(`am
(i)
b +m(i)

a `b) (8)

and the metric reads [6, 11]

ds2 = 2du [dr +H(u, r, xγ)du+Wα(u, r, xγ)dxα] + gαβ(u, xγ)dxαdxβ, (9)

with α, β, γ = 2 . . . n− 1.
Since universality implies CSI (theorem 1.2) we restrict ourselves to the Kundt CSI metrics,

where [6, 12]

Wα(u, r, xγ) = rW (1)
α (u, xγ) +W (0)

α (u, xγ),

H(u, r, xγ) =
r2

8

(
a+W (1)

α W (1)α
)

+ rH(1)(u, xγ) +H(0)(u, xγ), (10)

gαβ(xγ) (note that gαβ,u = 0) is the metric of a locally homogeneous space and a is a constant.
Note that (10) are necessary but not sufficient conditions for Kundt CSI.

4.1. type III
Note also that for type III and τi = 0, the Bianchi identities imply Λ = 0 and thus type III,
τi = 0, Kundt universal spacetimes are in fact Ricci-flat and VSI (vanishing scalar invariants)
with a metric of the form [13,14]

ds2 = 2du [dr +H(u, r, xγ)du+Wα(u, r, xγ)dxα] + δαβdxαdxβ, (11)
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with

W2 = 0, (12)

WM (u, r, xγ) = W
(0)
M (u, xγ), (13)

H(u, r, xγ) = rH(1)(u, xγ) +H(0)(u, xγ). (14)

Since further constraints on H and WM follow from the Einstein equations we conclude with
an explicit example of a four-dimensional type III, τi = 0 Ricci-flat Kundt universal metric
(expressed in other coordinates) [15]

ds2 = 2dudv − x(v + ex)du2 + ex(dx2 + e−2udy2). (15)

4.2. type II
An example of a four-dimensional type II universal Kundt spacetime

ds2 = 2dudv +
(
−v2λ+H(u, x, y)

)
du2 +

1

λ
(dx2 + sinh2 xdy2), �H = 0 (16)

has been given already in [2]. As we will discuss elsewhere, for some type II classes of Kundt
spacetimes, universality depends on dimension of the spacetime.
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