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Abstract. Recently, we generalized a covariant and conformal version of the Z4 system of
the Einstein equations using a reference metric approach, that we denote as fCCZ4. We
successfully implemented and tested this approach in a 1D code that uses spherical coordinates
and assumes spherical symmetry, obtaining from one to three orders of magnitude reduction of
the Hamiltonian constraint violations with respect to the BSSN formulation in tests involving
neutron star spacetimes. In this work, we show preliminary results obtained with the 3D
implementation of the f{CCZ4 formulation in a fully 3D code using spherical polar coordinates.

1. Introduction

The Z4 formulation [1] of the Einstein equations is an extension of these equations obtained
by adding a four vector (4 Z, to the original system. Given a set of initial data which are a
solution of the original Einstein equations, the extended equations will yield the same solution
provided that at the initial time slice (4) Z,, = 0. Any deviation from the solution of the original
Einstein equations will then propagate away. Two conformal and traceless decomposition of the
Z4 system have been recently proposed, namely the Z4c formulation [2, 3, 4, 5] and the CCZ4
formulation [6, 7]. Both of them incorporate the constraint damping scheme developed by [8].
This scheme allows to control dynamically the constraint violations by means of constraint
damping terms, which are parametrized by two constants k1 and k3. Both formulations have
been extensively tested and results show a reduction of the Hamiltonian constraint violations
from one to three orders of magnitude with respect to BSSN [9, 10, 11], the actual values
depending on the particular tests considered.

In a recent paper [12] we proposed a generalized covariant and conformal version of the Z4
system of the Einstein equations by adopting a reference metric approach. This approach, which
we call f{CCZ4 for short, reduces to the CCZ4 formalism in Cartesian coordinates, but is well-
suited for curvilinear coordinates as well. In [12] we implemented this f{CCZ4 formalism in a 1D
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code that employs spherical polar coordinates under the assumption of spherical symmetry using
a partially-implicit Runge-Kutta (PIRK) method. This scheme sidesteps the use of traditional
regularization procedures when using spherical coordinates and allowed us to evolve both vacuum
and non-vacuum spacetimes in spherical symmetry without encountering numerical instabilities.
We performed several tests and compared violations of the Hamiltonian constraint in the fCCZ4
with those in the BSSN systems for different choices of the free parameters x; and k3. For an
optimal choice of parameters and for neutron star spacetimes, the violations of the Hamiltonian
constraint are between 1 and 3 orders of magnitude smaller in the fCCZ4 system than in the
BSSN formulation. However, for black hole spacetimes the advantages of f{CCZ4 over BSSN are
less evident.

The next logical step in our program was to implement and test the f{CCZ4 formulation in a
fully 3D code. This has been accomplished recently and preliminary results are reported in this
work. In our research we employ our 3D code nada, whose ability to accurately handle numerical
evolutions using spherical polar coordinates without any symmetry assumption adopting a
covariant form of the BSSN formulation was recently shown in [13] and more recently by [14] who
reported the first successful implementation of relativistic hydrodynamics coupled to dynamical
spacetimes in spherical polar coordinates with no symmetry assumptions. The new fCCZ4
formulation has been assessed and compared with BSSN by performing two tests in 3D. We
anticipated to find the same trend already observed in the spherically symmetric case and that
has been indeed the case; that is, we observe a reduction in the violation of the Hamiltonian
constraint of several orders of magnitude for f{CCZ4 with respect to BSSN also in 3D.

2. The Fully Covariant and Conformal Z4 Formulation
In the Z4 system, the Hamiltonian and momentum constraints result in equations for the four-
vector () Z,. In a 3+1 decomposition, these equations can be written as evolution equations for
the projection of the Wz ,, along the normal n#, which, following standard convention, we define
as O = —nu(‘l)Z” = a@®WZ9 and the spatial projection of 4) Zy, Zi = %‘“M)Zu- Here Z; denotes
a spatial vector whose index can be raised with the (inverse) spatial metric, Z* = % Z;.
By defining
8L = 615 — Eﬁ (1)

where L3 denotes the Lie derivative along the shift vector 3¢, the fully covariant and conformal
Z4 system in a reference-metric approach (fCCZ4) is then given by the following set of evolution
equations:

9 _ ,
01y = _g'_VijDkBk — 204y, (2)
aLA_ij = —%AijDk,Bk — QOéAZkAgc + Oéf_lij (K — 2@) + 6_4¢[—2aDiDj¢
+405DZ¢D]¢) + 4D(lOéD])¢) — DiDjOé + O[(Rij + DlZ] + DJZZ — STFSZ])]TF, (3)
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—gofy”ajK + 27" (0, © — O a — gaKZk)—Qam”y”Zj — 16may" S;. (7)

Here the superscript TF denotes the trace-free part of a tensor, x1 and k2 are the damping
coefficients introduced by [8], and D;, D; and D; denote the covariant derivatives built from the
connection associated with the reference metric 4;;, the physical metric v;; and the conformal
metric 7;;, respectively. We have also defined

N = AT 4279 75, (8)
where ‘ ‘ ‘
AT = 5F AT, (9)

The vector A’ plays the role of the “conformal connection functions” in the original CCZ4
system; its evolution equation (7) involves the evolution equation for the variables Z;.

The matter sources E, S, S;; and S denote the density, momentum density, stress, and the
trace of the stress as observed by a normal observer, respectively:

E = nymn,TH, (10)
Si = —viun T, (11)
Sij = YT, (12)
S = 448, (13)

In Eq. (3), we compute the Ricci tensor Rij associated with %;; from

_ 1 A A ~
Rij = _?yklpkpmj + 3Dy AT* + AT*AT (1 + ™ (AT AT jyt + ATTEAT ). (14)

Here we compute the AT? from their definition (9). Given AT, and values for A%, the vectors
Z;, which are not evolved independently, can be determined from (8).
Unless stated otherwise we fix the gauge freedom by imposing the so-called “non-advective
1+log” condition for the lapse
O = —2a(K — 20), (15)

and a variation of the ” Gamma-driver” condition for the shift vector

&6 = B, (16)
OB = Zat]v’. (17)

Finally, when © = Z; = 0, the evolution equations (2)-(7) imply that the Hamiltonian and
momentum constraints hold in the form

2 . _ _ _
gK2 — A;jAY + e7Y(R — 8D'¢D;¢p — 8D?¢)—167E = 0, (18)

M = e_4¢(

H

. o o 2 _. . )
D;j(VFAT) +6490;0 — 2710, + ATEATY ) —8rS" =0, (19)

SI=

where R is the trace of R;;. We refer to [12] for a complete list of definitions of the variables
used here.
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Figure 1. Left panel: L2-norm of the Hamiltonian constraint in the single puncture black hole
simulation. The inset shows a magnified view of the initial 100M in the evolution. Right panel:
Same quantity but computed outside the apparent horizon.

3. Numerical Results

The Einstein equations coupled to the general relativistic hydrodynamics equations (see [12] for
specific details) are solved using both the BSSN and the f{CCZ4 formulations. We show results
for two 3D tests, namely the propagation of an axisymmetric Teukolsky wave and the evolution
of a rotating neutron star in equilibrium, and only one 1D test, the evolution of a Schwarzschild
black hole, addressing the interested reader to [12] for additional tests in the case of spherical
symmetry. The 1D test corresponds to spherically symmetric initial data that have been evolved
using the 1D code mentioned previously. We note that similar results are found when evolving
the same initial data using the 3D code nada.

3.1. 1D test: Schwarzschild black hole

We evolve a single Schwarzschild black hole given by wormhole initial data and follow the
coordinate evolution to the trumpet geometry. In the left panel of Fig. 1 we plot the L2-
norm of the Hamiltonian constraint computed in the whole computational domain (including
the interior of the apparent horizon (AH)). The largest violation of the Hamiltonian constraint
arises from the finite differencing across the puncture. The right panel of Fig. 1 shows that
the L2-norm of the Hamiltonian constraint violation computed outside the AH presents some
differences between the two formulations which also depends on the values for the damping
coefficients. We observe that the numerical evolutions develop instabilities for ko = 0 and
k1M = (0,0.02). Selecting k1M = 0.07 and ko = 0.5 leads to an over-damped behavior that
is responsible for an exponential growth of the constraint violation at late times. We find that
ko = 0 with k1M = 0.07 or k1M = 0.2 give the best results, leading to constraint violations
that are comparable to those achieved with BSSN.

The AH mass is defined as Map = \/A/16m, where A is the proper area of the horizon.
For stable black hole evolutions the difference between the AH mass for BSSN and fCCZ4 is
less than 0.005% at the end of the simulation (¢ = 1875M), while the error with respect to the
initial ADM mass is ~ 0.7%. We note, however, that the black hole mass continues to drift
for the fCCZ4 formulation, while it remains constant after an initial transition for the BSSN
formulation.
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Figure 2. Time evolution of the L2
norm of the Hamiltonian constraint of the
Teukolsky wave for BSSN and fCCZ4 for
different choices of the damping parameter
K1, with k9 = 0.
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Figure 3. Time evolution of the L2
norm of the Hamiltonian constraint of
the rotating neutron star for BSSN and
fCCZ4 for different choices of the damping
parameter k1, with ko = 0.

3.2. 3D test: Weak gravitational waves

As a first 3D test of our f{CCZ4 formulation we consider small-amplitude gravitational waves on
a flat Minkowski background. We construct an analytical, linear solution for quadrupolar (I=2)
waves from a function

F(r,t) = A(r ¥ t)e F0°/X (20)

where the constant A is related to the amplitude of the wave and A to its wavelength. For
our test we consider the axisymmetric mode m = 0, set A = 1, and choose an amplitude small
enough, A = 1077, to ensure that the test is performed in the linear regime.

In Fig. 2 we show the time evolution of the L2-norm of the Hamiltonian constraint for BSSN
and fCCZ4 for two values of the damping parameter ;. In [12] we realized that the influence
of the parameter ko on the results is not important and can even lead to over-damping effects,
so we kept k9 equal to zero for most tests. Likewise, we choose ko = 0 for the present 3D test.
Fig. 2 shows that the L2-norm of the Hamiltonian constraint is almost five orders of magnitude
smaller for fCCZ4 than for BSSN, as expected. The difference between the two choices of the
damping parameter x; is not noticeable in this case.

3.3. 3D test: Rotating neutron star
For our second 3D test we evolve a rapidly rotating relativistic star in equilibrium. The initial
data are constructed using the RNS code [15]. In particular, we choose the uniformly rotating
BU7 model from [16], a relativistic polytrope with polytropic index N = 1 and polytropic
constant K = 100. This model has a central energy density (in units G = ¢ = Mg = 1)
€. = 1.444 x 1073 and a ratio of polar-to-equatorial coordinate axis rp/Te = 0.65, resulting in a
star with mass M = 1.666 and radius R = 12.3.

In Fig. 3 we plot the time evolution of the L2-norm of the Hamiltonian constraint for BSSN
and fCCZ4 for two different choices of the damping parameter x; and ko = 0. Again, when
using fCCZ4 we observe a reduction in the violation of the Hamiltonian constraint up to almost
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three orders of magnitude with respect to BSSN. Besides, contrary to the previous test, we find
that taking a large enough value of k1 leads to slightly smaller constrain violations.

4. Summary

The fCCZ4 formulation of the Einstein equations allows us to write the evolution equations
in a fully covariant form suitable for curvilinear coordinate systems. In this paper we have
discussed the implementation of the f{CCZ4 system in spherical coordinates adopting a PIRK
scheme for the time evolution. We have shown that this approach leads to stable evolutions —
without regularization of the equations at the coordinate singularities — for both vacuum and
non-vacuum spacetimes.

We have tested our approach both in a 1D code and in the 3D code nada. Our results for
non-vacuum spacetimes show that for optimal choices of the constraint damping parameters of
fCCZ4, we obtain a reduction from 1 to 3 orders of magnitude of the violations of the Hamiltonian
constraint with respect to BSSN. On the other hand, for black hole spacetimes in the spherically
symmetric case, we have seen that fCCZ4 offers little advantages over BSSN. We also note, as
discussed in detail in [12], that inadequate choices of the damping parameters may lead to over-
damping effects. Of both damping parameters, it is x; the one that plays the most important
role in the reduction of the violations of the constraints. Increasing the value of this parameter
tends to reduce constraint violations but may also introduce too large damping, thereby making
the code unstable and causing it to crash.

The results presented in this work are preliminary. In the near future we plan to fully assess
the fCCZ4 formulation in a fully 3D setting by considering more demanding scenarios such as
the dynamical evolution of rotating black holes and the gravitational collapse of rotating neutron
stars leading to black hole formation, investigating in particular the benefits of the new approach
for the extraction of gravitational radiation when employing spherical coordinates.
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