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Abstract. An exact equation describing the inertial forces for arbitrary orthonormal frames on
arbitrary spacetimes is presented. It manifests that the so-called gravitomagnetic field consists of
a combination of two effects of independent origin: the vorticity of the observer congruence, plus
the angular velocity of rotation, relative to Fermi-Walker transport, of the triad of spatial axes
that each observer “carries” with it. Such formulation encompasses different gravitomagnetic
fields in the literature. The formalism is applied to notable reference frames in Kerr spacetime,
and their inertial forces shown to have familiar Newtonian analogues.

1. Introduction
Inertial forces are fictitious forces that arise in the description of the motion of test particles
when the reference frame is not inertial. That is always the case in a curved spacetime, since
no globally inertial frames exist therein. The inertial forces have been defined in different ways
in the literature (see [1] and Refs. therein), from the best known linearized theory approaches,
to exact formulations (e.g. [2, 3, 1]). Herein we will follow the exact approach in [1], to which
we refer for more details and notation/conventions; it embodies many of the approaches in the
literature as special cases. The problem may the stated as follows. Consider a congruence of
observers of 4-velocity uα, and a test particle of worldline zα(τ) and 4-velocity dzα/dτ = Uα.
Let hαβ ≡ uαuβ + δαβ be the projector orthogonal to uα (the “space” projector). The spatial

projection of the particle’s 4-velocity, U 〈α〉 ≡ hαβU
β, gives a notion1 of velocity of the particle

relative to the observers. For simplicity, we consider only particles in geodesic motion. It is the
variation of U 〈α〉 along zα(τ), that one casts as inertial forces. To determine it one must specify
the reference frame. The observers’ 4-velocity u defines the time axis; but one still needs to
specify the spatial axes, in particular their transport law along the observer congruence (see Fig.
1 of [1]), which is where the different approaches mainly differ. If we take an orthonormal frame
(a “tetrad”) eα̂, with e0̂ = u, the general form for the transport law reads

∇ueβ̂ = Ωα̂
β̂
eα̂; Ωαβ = 2u[αaβ] + εαβνµΩµuν , (1)

where aα ≡ ∇uu
α, and Ωα the angular velocity of rotation of the spatial triad eî relative to

Fermi-Walker transport. We will leave Ωα arbitrary for now.
In order to measure the rate of change of U 〈α〉 with respect to such frame, we need a connection

∇̃ (i.e., a covariant derivative) for spatial vectors with the following properties: i) with respect

1 More precisely, one can decompose Uα = γ(uα + vα), where γ = −Uαuα =
√

1− vαvα is the Lorentz factor,
and vα = U 〈α〉/γ. vα is the usual 3-velocity of the particle relative to the observers; in a coordinate system {t, xi}
where the observers are at rest (ui = 0), one has vi = dxi/dt.
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to it, the spatial triad vectors eî are constant along the observer congruence: ∇̃ueî = 0. That

is, ∇̃u should become an ordinary time derivative (∂u) in the prescribed frame2. ii) Along the
directions orthogonal to uα, ∇̃ should equal the projected Levi-Civita spacetime connection,
∇̃XZ

α = hαβ∇XZ
β, for all Xα and Zα orthogonal to uα. This is to correct for the variation

of the axes eî in the directions orthogonal to uα, which are not related to inertial forces (e.g.
the trivial variation from point to point of the eî of a non-rectangular coordinate system in flat

spacetime). This is achieved by the connection ∇̃ whose action on a spatial vector Xα reads

∇̃αXβ = (hu)βγ∇αXγ + uαε
β
δγλu

γXδΩλ . (2)

The first term (hu)βγ∇αXγ ≡ ∇⊥
αX

β is called [2] the “Fermi-Walker connection”, since ∇⊥
uX

α is
the Fermi-Walker derivative ofXα along the congruence. The second term adjusts the connection
to the transport law chosen for the eî. It is easily seen that ∇̃ preserves the spatial metric hαβ.

Differentiating U 〈α〉, with respect to ∇̃, along the particle’s worldline (of tangent Uα) yields

∇̃UU
〈α〉 = −γ∇Uu

β + εαβγδu
δUβΩγ ≡ FαGEM (3)

which is the inertial (or “gravitoelectromagnetic”) “force”. It consists of two terms of distinct
origin: a first term that depends only on the variation of the observers’ 4-velocity uα along the
particle’s worldline, and a second independent term, that arises from the transport law for the
spatial triads eî. Decomposing ∇βuα in the congruence’s kinematics

∇βuα = −aαuβ − εαβγδωγuδ +K(αβ); K(αβ) = h µ
α h

ν
β ∇µuν = σαβ + θhαβ , (4)

where ωα ≡ εαβγδ∇βuγuδ/2 is the vorticity of the observer congruence, and K(αβ) the
shear/expansion tensor (θ ≡ expansion, σαβ ≡ traceless shear), we get

FαGEM = γ
[
γGα + εαβγδu

δUβHγ −K(αβ)Uβ
]
, (5)

where
Gα = −∇uu

α ; Hα = ωα + Ωα (6)

are, respectively, the “gravitoelectric” and “gravitomagnetic” fields, that play analogous roles
to the electric and magnetic fields in the Lorentz force. Hα thus consists of two parts of
independent origin: the vorticity ωα of the observers, plus the angular velocity Ωα of rotation
of the spatial triads relative to Fermi-Walker transport. Ωα has a physical interpretation in
terms of the “precession” of gyroscopes. According to the Mathisson-Papapetrou equations, no
torque is exerted on a gyroscope (taken as a pole-dipole particle) in a gravitational field; its
spin vector (under the Mathisson-Pirani spin condition [4]) undergoes Fermi-Walker transport,

DSα/dτ = Sνa
νUα. In a comoving tetrad eα̂ (where U α̂ = δα̂

0̂
, S0̂ = 0), this is

DS î

dτ
= 0 ⇔ dS î

dτ
= −Γî

0̂k̂
Sk̂ =

(
~S × ~Ω

)î
. (7)

The inverted commas are because the gyroscopes, in rigor, do not precess (it is the frame that
rotates); their rotation axes actually determine the local compass of inertia; and Fermi-Walker
transport mathematically the non-rotating frame carried by an accelerated observer [1, 4, 7].

Ωα is up until now arbitrary; different choices are made in the literature. The natural choice
would be to choose spatial axes pointing to fixed neighboring observers; in general, however, that

2 Just like ∇u = ∂u in an inertial frame, or ∇⊥
u = ∂u in a Fermi-Walker transported frame.
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is not compatible with orthonormal axes. Let ηα be a connecting vector between the observers’
worldlines, Luηα = 0, and Y α = hαβη

β its space projection. Y α evolves in the tetrad as [1]

Ẏî =

[
σîĵ +

1

3
θδîĵ + ε̂ik̂ĵ(ω

k̂ − Ωk̂)

]
Y ĵ . (8)

If the congruence is rigid (σîĵ = θ = 0), and one chooses spatial triads eî co-rotating with the

observers, which amounts to choosing Ωα = ωα, then Y α is constant in the tetrad, Ẏî = 0. If the

congruence is not rigid but only expands (θ 6= 0, σîĵ = 0), then Ẏî = θYî/3, i.e., Y α, albeit not
constant, has a fixed direction on the tetrad, so the eî still point to fixed neighboring observers.
If σîĵ 6= 0, then that is not possible, as the connecting vectors cannot remain orthogonal; the
choice Ωα = ωα means in this case that the triads eî co-rotate with the observers, but without
undergoing their shearing effects. This is as much as an orthonormal frame can adapt to the
observer congruence; for this reason we dub it the congruence adapted frame. It is argued in [5]
to be the closest generalization of the Newtonian concept of reference frame.

Other transport laws for the spatial frame (with Ωα 6= ωα) are used in the literature, as
they can be suitable for some applications; an example are the so-called “locally non rotating
frames” (e.g. [6, 7, 3]), defined in stationary axisymmetric spacetimes, and where the observer
congruence are the zero angular momentum observers (whose vorticity is zero, ωα = 0), and the
triads eî are tied to the background symmetries (implying in general that Ωα 6= 0). Another
choice [2] is a Fermi-Walker transported spatial frame (Ωα = 0). These reference frames might
seem strange at first; in the next section we will discuss them in the Kerr spacetime, and show
that each of them has actually familiar Newtonian analogues.

2. Rigid observer congruences
2.1. Rigidly rotating frames
Rigidly rotating frames are reference frames adapted to a rigidly rotating congruence of observers.
The simplest case is the rigidly rotating frame in flat spacetime. Let α = constant be their
angular velocity. The metric is obtained from the Minkowski metric in cylindrical coordinates
{t, r, ϕ, z} by the transformation ϕ = φ + αt. A spatial orthonormal triad eî adapted to the
observers is obtained by taking (using hαβ, see Sec. 1) the normalized projection, orthogonal to
u, of the coordinate basis vectors {∂r, ∂φ, ∂z}. The eî point to fixed observers (since the ∂i are
connecting vectors), and (in agreement with Eq. (8)) rotate relative to Fermi-Walker transport

with an angular velocity that matches the congruence’s vorticity, ~Ω = ~ω = α/(1−α2r2)∂z. The
inertial forces in this frame are obtained by setting K(αβ) = 0, Hα = 2ωα, in Eq. (5),

~FGEM = γ
[
γ ~G+ 2~U × ~ω

]
(9)

with ~G = α2r/(1 − α2r2)∂r. These are the inertial forces felt in a merry go round; γ2 ~G and

2γ~U × ~ω are relativistic versions of the well known centrifugal and Coriolis forces.

2.1.1. Frame adapted to the “static” observers in Kerr spacetime Take the Kerr metric in
Boyer-Lindquist coordinates. The so-called “static” observers are the observers at rest in that
coordinate system, whose worldlines are tangent to the time Killing vector field, u ∝ ∂/∂t. This
is a rigid observer congruence, and a spatial orthonormal triad eî adapted to it is obtained
by projecting the coordinate basis vectors {∂r, ∂θ, ∂φ} in the hyperplanes orthogonal to u, and
normalizing. The triad eî points to fixed observers (as the ∂i are connecting vectors), and rotate

with respect to Fermi-Walker transport with angular velocity ~Ω = ~ω, in agreement with Eq.
(8). Since the congruence is rigid, and the triads are ~eî locked to neighboring observers, this is a
rigid frame. The vorticity ~ω decreases as r increases, vanishing at infinity where the eî become
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Figure 1. Two examples of rigidly rotating frames: a) a merry go round and b)-c) the frame adapted

to the “static” observers in the Kerr spacetime. The inertial forces have the same form (9). ~G has

opposite directions (centrifugal in a)); in Kerr ~ω 6= 0 for finite r, whilst limr→∞ ~ω = 0 (manifestation of

frame-dragging). The axes at infinity are inertial (“star fixed”); since the frame is rigid, measuring the

precession of gyroscopes (e.g. Gravity-Probe B) or deflection of test particles (e.g. the LAGEOS satellite)

at any point relative to this frame, amounts to measuring them with respect to the distant stars.

inertial axes. This manifests the frame-dragging effect (absent in the merry go round of Fig.
1a)): the frame is inertial at infinity, and rotating close to the black hole (relative to the local
compass of inertia, see Sec. 1) whilst, at the same time, being rigid.

A gyroscope whose center of mass is at rest in this frame is seen to precess as (cf. Eq. (7))

d~S/dτ = ~S × ~H/2. Since the frame is rigid, the triads eî are locked to the inertial axes at
infinity; experimentally this amounts to anchor the axes to telescopes pointing at the distant
stars (Fig. 1c)). This means that, at any point, − ~H/2 is in fact the precession with respect to
an inertial frame at infinity. It is known as the Lense-Thirring gyroscope precession, and has
been measured, in the gravitational field of the Earth, by the Gravity Probe B mission [9].

The expression for the inertial forces is formally similar to the one in a merry go round, Eq.
(9), only now ~G = −~a and ~ω = ~Ω are minus the acceleration and the vorticity of the static

observers in Kerr spacetime (for explicit expressions for ~a and ~Ω, see Eqs. (107)-(108) and (110)
of [7]). The gravitomagnetic force, second term of Eq. (9), leads to a precession of the orbits
of particles in the field of a rotating source, which has been detected by Laser Ranging to the
LAGEOS satellites [10], and is under further scrutiny by the ongoing LARES mission [11].

2.2. Non-adapted frame — the “Fermi-Walker” gravitomagnetic field
Consider now a reference frame composed of the same congruence of static observers in Kerr
spacetime, but now carrying spatial triads eî that undergo Fermi-Walker transport along the
congruence; i.e., triads attached to the spinning axis of local guiding gyroscopes, which is given
by the condition Ωα = 0. These triads are not adapted to the congruence: the congruence has
vorticity (ωα 6= 0), thus we have observers that are rotating, but carrying with them spatial axes

that do not rotate. The gravitomagnetic field reduces to the observer’s vorticity, ~H = ~ω+ ~Ω = ~ω
and is known as the “Fermi-Walker gravitomagnetic field” [2]; it is one half of the ~H of the
start-fixed rigid frame of Sec. 2.1.1. The inertial forces in such frame are thus

~FGEM = γ
[
γ ~G+ ~U × ~ω

]
. (10)

These are the inertial forces involved in the “hidden momentum” of a spinning particle [4]. Such
reference frame might seem strange, but it actually has a familiar Newtonian analogue: a family
of rigidly rotating observers in flat spacetime, carrying a system of axes that remain fixed to
the basis vectors of the Cartesian inertial frame (see Fig. 2b) of [1]), which is the situation in a
Ferris wheel, for observers sitting in the cabins.
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3. Zero angular momentum observers (ZAMOs)
The quantity uφ = u · ∂φ is identified with the observer’s “orbital” angular momentum. Zero
angular momentum observers (ZAMOs) are stationary observers for which uφ = 0. They

have angular velocity φ̇ZAMO = −g0φ/gφφ, and 4-velocity uαZAMO = u0ZAMO(1, 0, φ̇ZAMO, 0), the
component u0ZAMO being determined by the normalization condition u2

ZAMO = −1.
These observers, also called “fiducial” or “Eulerian” [8], have special properties. They have

no vorticity (ωα = 0), being orthogonal to the hypersurfaces t = constant. This means that
they do not rotate relative to their neighbors (are locally irrotational). They also measure zero
Sagnac effect around the black hole. That is, consider a circular loop, made of optical fiber, at
fixed (r, θ) around the black hole, and let a flash of light be emitted at some point, so that light
rays travel along the fiber both in the positive and negative φ directions (i..e, both co-rotating
and counter-rotating with the black hole); it turns out that the ZAMOs will receive back both
light signals at the same time. Hence the ZAMOs are not rotating in any sense relative to the
spacetime geometry — locally and “globally”. However, relative to the fixed stars (i.e., to the
static observers), they are seen to be rotating, with angular velocity φ̇ZAMO 6= 0, which manifests
frame-dragging. The congruence has zero expansion, θ = 0, but shears, σαβ 6= 0.

Analogy with a free vortex.— The ZAMOs congruence exhibits many formal similarities with
the irrotational flow of a free vortex (Fig. 2) well known from fluid dynamics. In a free vortex
(in flat spacetime) the fluid has angular velocity φ̇ = K/r2. In spite of being rotating relative
to the (globally inertial) star-fixed frame, the vorticity of the flow is zero (ωα = 0), i.e., it is
locally irrotational, just like the ZAMOs in Kerr spacetime. Also, similarly to the ZAMOs, the
congruence does not expand (θ = 0) but shears (σαβ 6= 0). The qualitative difference is that the
observers comoving with the flow have non-zero angular momentum, and thus measure non-zero
Sagnac effect along a circular optical fiber centered at r = 0. This is because the frame-dragging
effect of Kerr spacetime has no parallel in this setup: herein, rotating with respect to the distant
stars implies having non-zero angular momentum (unlike the ZAMOs in Kerr, which, for finite
r, rotate with respect to the distant stars, whilst having zero angular momentum).

3.1. Congruence adapted frame
Since the ZAMOs have no vorticity, the congruence adapted frame amounts to setting Ωα =
ωα = 0, i.e., choosing spatial triads Fermi-Walker transported along the congruence. This means
that there is no gravitomagnetic field in this frame, Hα = ωα+Ωα = 0, the inertial forces reduce
to the gravitoelectric field plus the shear force, see Fig. 2a),

FαGEM = γ
[
γGα − σαβUβ

]
≡ FαG + Fαshear . (11)

This reference frame has a close analogue in fluid dynamics. As is well known, a boat circling
a free vortex keeps its tip pointing always in (nearly) the same direction (Fig. 2b)); it is so
because the boat behaves approximately as a vorticity meter. In a reference frame adapted to
observers comoving with the flow of a free vortex (where the spatial axes are tied to vorticity
meters), the inertial forces take likewise the form (11).

3.2. Locally “non-rotating” frames (LNR)
The so-called “locally non-rotating frames” [6] (also known as “proper reference frames of the
fiducial observers” [8, b]) are frames associated with the ZAMOs, where the spatial triads eî
are tied to the background symmetries. These frames are regarded as important for black hole
physics, because they are defined everywhere (unlike the star fixed static observers of Sec. 2,
that do not exist past the ergosphere). For the Kerr spacetime the eî are obtained by simply
normalizing the Boyer-Lindquist coordinate basis {∂r, ∂θ, ∂φ} (as it is orthogonal to u = uZAMO).
These triads clearly are not Fermi-Walker transported along the congruence (i.e., Ωα 6= 0), see
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Figure 2. a) Frame adapted to the ZAMOs in Kerr spacetime; gray arrows represent the ZAMOs

velocity (relative to the star fixed frame), ~U are the space components of the test particle’s velocity

relative to the ZAMOs, U 〈α〉 = hαβU
β . b) Frame adapted to observers comoving with the flow of a

free vortex; the spatial frame is set up by tying the axes to vorticity meters (e.g. a boat). c) Locally

“non-rotating” frames in Kerr spacetime. d) Frame composed of observers comoving with the flow of a

free vortex, carrying spatial triads tied to a cylindrical coordinate system. In a) and b), Hα = θ = 0, and

the inertial forces reduce to Eq. (11). In c) and d), Hα = Ωα, and the inertial forces are given by (12).

Fig. 2c); the explicit expression for Ωα ≡ Ωα
LNR is given in e.g. Eqs. (73)-(74) of [7]. Hence,

the denomination locally “non-rotating” frames is misleading (cf. [7]); indeed the spatial frame
rotates relative to the local compass of inertia. This is manifest in the inertial forces; the
gravitomagnetic field in this frame is (since ωα = 0) Hα

LNR = Ωα
LNR, and thus

~FGEM = γ
[
γ ~G+ ~U × ~ΩLNR − σîĵU

ĵ~eî

]
≡ ~FG + ~FGM + ~Fshear , (12)

i.e., consist of the gravitoelectric, gravitomagnetic, and shear forces. This reference frame again
has an analogue in fluid dynamics: the frame associated to the observers comoving with the flow
of a free vortex, and carrying spatial triads tied to the basis vectors of a cylindrical coordinate
system, see Fig. 2d); therein, likewise, Hα = Ωα and the inertial forces take the form (12).
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