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Abstract. In these proceedings we present recent progress concerning existence of symmetry
operators for the conformal scalar wave equation, the Dirac-Weyl equation and the source-free
Maxwell equation. Furthermore, we consider conserved currents for the source-free Maxwell
equations.

1. Introduction
In these proceedings we consider symmetry operators, i.e. linear differential operators which
take solutions of a differential equation to solutions. These are versatile tools for the analysis of
fields on spacetimes with special structure. A well-known example of a symmetry operator for
the scalar wave equation is provided by the Lie derivative along a Killing vector field. However,
in the Kerr spacetime, there is also another symmetry operator that arises from a Killing spinor
rather than a Killing vector. This was an essential tool in a proof of decay of scalar waves on
the Kerr background by Andersson and Blue [4].

As the symmetry operators are so useful, it is natural to ask when they exist. Here we will
consider what conditions on a spacetime are necessary and sufficient for existence of symmetry
operators for the conformal wave equation, the Dirac-Weyl equation, and the Maxwell equation,
i.e. for massless test fields of spins 0, 1/2 and 1. We will investigate how the conditions for
the symmetry operators for the different field equations are related, and how they are related
to existence of conserved currents. This exposition is mainly based on the paper [3] about
symmetry operators, but also ideas from [2] about conserved currents are presented.

2. Preliminaries
2.1. Spinors
Throughout, we will work on an orientable and time orientable globally hyperbolic spacetime
with metric gab satisfying Einstein’s field equations. We will use the (+− −−) sign convention
and extensively use spinor notation from [6].

2.2. Irreducible decompositions
Any spinor can be decomposed so it is written entirely in terms of the spin metric and symmetric
spinors formed from the original spinor by taking traces and symmetrizing the remaining indices.
For instance, a general valence (3, 0) spinor is decomposed as

TABC = T(ABC) − 1
6T

D
CDεAB − 1

6T
D
DCεAB − 1

6T
D
BDεAC − 1

6T
D
DBεAC − 1

2TA
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We call this an irreducible decomposition. This is an important simplification because now we
only need to work with symmetric spinors. From an algebraic point of view this is of great
importance when one wants to simplify complicated spinorial expressions and tries to write
them in a canonical form. Most calculations for the research presented here were done using the
xAct suite for Mathematica. In fact I have written the SymManipulator package which is a part
of xAct, and includes an efficient algorithm to do irreducible decompositions of arbitrary spinor
expressions.

As we have seen, one can work with only symmetric spinors, but a covariant derivative of a
symmetric spinor is not necessarily symmetric, so we need to do an irreducible decomposition
of that too. This gives us four natural differential operators that maps symmetric spinors
to symmetric spinors. For instance, consider the irreducible decomposition of the covariant
derivative of a symmetric valence (3, 2) spinor.

∇A
A′
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3 ε̄

A′(B′
(C3,2T )ABCD

C′)

− 3
4εA(B(C †

3,2T )CD)
A′B′C′

+ 1
2εA(B ε̄

A′(B′
(D3,2T )CD)

C′),

where

(D3,2T )AB
A′

= ∇CB′
TABC

A′
B′ ,

(C3,2T )ABCD
A′

= ∇(A
B′
TBCD)

A′
B′ ,

(C †
3,2T )AB

A′B′C′
= ∇C(A′
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(A′
TBCD)
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These operators generalizes to arbitrary valence as long as enough indices exist to form the index

contractions, so we get Dk,l, Ck,l, C †
k,l and Tk,l for symmetric valence (k, l) spinors. More details

about these operators including commutator relations can be found in [3].

Definition 2.1. A symmetric valence (k, l) spinor LA...F
A′...F ′

is called a valence (k, l) Killing
spinor if (Tk,lL)A...G

A′...G′
= 0.

3. Symmetry operators
With our notation the field equations we would like to study now takes the forms:

• The conformal wave equation (Spin-0): (� + 4Λ)φ = 0 .

• The Dirac-Weyl equation (Spin-1/2): (C †
1,0φ)A′ = 0.

• The Maxwell equation (Spin-1): (C †
2,0φ)AA′ = 0.

As mentioned in the introduction, what we mean by a symmetry operator is a linear
differential operator that maps a solution of a differential equation to a solution of the differential
equation. However, we can slightly extend this notion so that an operator that map to solutions
of the complex conjugate version of the differential equation instead is also considered to be
a symmetry operator. As the complex conjugate of the Dirac-Weyl equation is (C0,1φ̄)A = 0
and similarly for the Maxwell equation, we can formulate the two different kinds of symmetry
operators for spin-1/2 and spin-1 as:

• First kind: ker C † → ker C †. (Preserves parity)

• Second kind: ker C † → ker C . (Changes parity)

The conformal wave equation is real so we do not have a notion of second kind symmetry
operators for that case. In the paper [3], we study both the first and second kind symmetry
operators up to second order, but here we will restrict ourselves to the first kind of operators.

To give clear statements for existence of symmetry operators, we introduce the following
operators that depends on the curvature.
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Definition 3.1. For a valence (2, 2) Killing spinor LAB
A′B′

, we define

(O
(0)
2,2L)A

A′ ≡ 1
3ΨABCD(C2,2L)BCDA′

+ 1
3Ψ̄A′

B′C′D′(C †
2,2L)A

B′C′D′

+ LBCA′B′
(C2,2Φ)ABCB′ + LA

BB′C′
(C †

2,2Φ)B
A′

B′C′ ,

(O
(1)
2,2L)AB

A′B′ ≡ LCDA′B′
ΨABCD − LAB

C′D′
Ψ̄A′B′

C′D′ .

It turns out that the conditions for existence of symmetry operators involves existence of
valence (2, 2) Killing spinors related to the curvature through the operators in definition 3.1.

Definition 3.2. Let LAB
A′B′

be a Killing spinor of valence (2, 2). Define the conditions

(A0) There is a function Q such that (O
(0)
2,2L)A

A′
= (T0,0Q)A

A′
.

(A1) There is a vector field PA
A′

such that (O
(1)
2,2L)AB

A′B′
= (T1,1P )AB

A′B′
.

The conditions for existence of symmetry operators up to second order for the conformal
wave equation was already settled by Michel, Radoux & Šilhan [5], but here we present it in
our notation. In the paper [3], we derived conditions for existence of symmetry operators of the
first kind up to second order for the Dirac-Weyl and Maxwell equations.

Theorem 3.3 ([5], [3]). (i) The conformal wave equation has a symmetry operator φ → χ ,
with order less or equal to two, if and only if there is a valence (2, 2) Killing spinor satisfying
condition A0.

(ii) There exists a symmetry operator of the first kind for the Dirac-Weyl equation φA → χA,
with order less or equal to two, if and only if there is a valence (2, 2) Killing spinor satisfying
condition A0 and condition A1.

(iii) There exists a symmetry operator of the first kind φAB → χAB for the Maxwell equation,
with order less or equal to two, if and only if there is a valence (2, 2) Killing spinor satisfying
condition A1.

To see how one can construct valence (2, 2) Killing spinors that satisfies these conditions, we
observe that if they are built from conformal Killing vectors or valence (2, 0) Killing spinors,
they naturally satisfy both conditions A0 and A1.

Proposition 3.4 ([3]). Let ξAA′
and ζAA′

be (not necessarily distinct) conformal Killing vectors
and let κAB be a Killing spinor of valence (2, 0).

(i) The symmetric spinor ξ(A
(A′
ζB)

B′) is a Killing spinor of valence (2, 2), which admits
solutions to the auxiliary conditions A0 and A1.

(ii) The symmetric spinor κABκ̄A′B′ is also a Killing spinor of valence (2, 2), which admits
solutions to the auxiliary conditions A0 and A1.

It is worth to note that the conditions A0 and A1 are not equivalent to each other. In fact
in [3] we give an example of a spacetime and a valence (2, 2) Killing spinor that satisfies the A1
condition, but not the A0 condition.

3.1. Maxwell equation
Although we have found expressions for all the symmetry operators in the paper [3], we will
here restrict ourselves to symmetry operators of the first kind for the Maxwell equation.

Theorem 3.5 ([3]). There exists a symmetry operator of the first kind up to order 2 for the
Maxwell equation iff

(T2,2L)ABC
A′B′C′

= 0, (T1,1P )AB
A′B′

= − 2
3(O

(1)
2,2L)AB

A′B′
, (T0,0Q)BA′ = 0.
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The symmetry operator takes the form

φAB → χAB = QφAB + (C1,1A)AB,

AAA′ = − LBC
A′B

′
(T2,0φ)ABCB′ + 1

3φ
BC(C2,2L)ABCA′ − 4

9φAB(D2,2L)BA′ − PB
A′φAB. (3.1)

We also note that the potential satisfies (C †
1,1A)A′B′ = 0. Furthermore, note that (3.1) is the

general form of a first order operator ker C †
2,0 → ker C †

1,1 up to addition of a gradient.

4. Conserved currents
In this section we will consider conserved currents for the Maxwell field, and see how these
are connected with the symmetry operators. Here, any divergence-free vector field formed as a
concomitant of the Maxwell field will be called a conserved current. Typically, we will study the
flux of a conserved currents through a timelike hypersurface, which is then a conserved energy.
A special class of conserved currents are the trivial currents, which should not be confused with
the zero current.

Definition 4.1. A trivial current J̃AA′
is a field that can be written as

J̃AA′ = (C †
2,0S)AA′ + (C0,2T )AA′

for some symmetric spinor fields SAB and TA′B′.

The flux through a hypersurface of a trivial current J̃AA′
is given by a pure boundary term.

We will study equivalence classes of currents up to trivial currents. For most applications it
is natural to study currents which are bilinear in φAB and φ̄A′B′ . We can write this class of
currents in a simple form.

Lemma 4.2 ([2]). Assume that JAA′ ∈ ker D1,1 is a conserved current that is a differential

operator that is bilinear in φAB and φ̄A′B′, where (C †
2,0φ)AA′ = 0, then it can be written as

JAA′
= AA

B′ φ̄A
′B′

+ J̃AA′
,

where AAA′ satisfies (C †
1,1A)A′B′ = 0 and J̃AA′

is a trivial current.

Remark 4.3. Observe that φAB → (C1,1A)AB is a symmetry operator of the first kind for the
Maxwell equation.

Remark 4.4. The general first order AAA′ is given by (3.1). Hence, the conditions for existence
of a first order conserved current of this form are the same as for a second order symmetry
operator of the first kind.
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