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Abstract. We address the problem of the energy conditions in modified gravity taking into
account the additional degrees of freedom related to scalar fields and curvature invariants. The
latter are usually interpreted as generalized geometrical fluids that differ in meaning with respect
to the matter fluids generally considered as sources of the field equations. In extended gravity
theories the curvature terms are encapsulated in a tensor Hab and a coupling g(Ψi) that can be
recast as effective Einstein field equations, with corrections to the energy-momentum tensor of
matter. The formal validity of standard energy inequalities does not assure basic requirements
such as the attractive nature of gravity, so we argue that the energy conditions have to be
considered in a wider sense.

1. Introduction
Cosmological observations lead to the introduction of additional ad-hoc concepts like Dark
Energy and Dark Matter within the standard Einstein theory. However the evasive nature of
these components may be interpreted as a possible signal of a breakdown of GR on large, infrared
scales [1]. In such a way, modifications and extensions of GR become a natural alternative if
such “dark” elements are not found out. Adopting this viewpoint, several recent works focussed
on the cosmological implications of alternative gravity [2, 3, 4] since such models may lead to
the explanation of the acceleration effect observed in cosmology [5, 6] and to the explanation of
the missing matter puzzle observed at astrophysical scales [7].

When one considers modified theories of gravity, at least for a large class of interesting cases,
the generalized field equations can be cast in the following form

g(Ψi) (Gab +Hab) = 8πGTab , (1)

where Hab is an additional geometrical term with regard to GR that encapsulates the geometrical
modifications introduced by the modified theory, and g(Ψi) is a factor that modifies the coupling
with the matter fields in T ab, where Ψi generically represents either curvature invariants or
other gravitational fields contributing to the dynamics. In the latter expression, as usual,
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Gab ≡ Rab − 1
2 gabR is the Einstein tensor, defined from the Ricci tensor Rab and its trace

R = Raa, the curvature scalar. The field equations govern the interplay between the geometry
of the spacetime and the matter content. General Relativity (GR) is recovered for Hab = 0 and
g(Ψi) = 1.

In the Einstein field equations, Gab = 8πGTab, there is a clear separation between the left-
hand side that corresponds to the geometry, and the right-hand side where one finds the energy-
matter distribution. The underlying idea is that the matter-energy distribution determine the
spacetime curvature, and hence how gravity acts, and it follows that any conditions that we
impose on Tab immediately translate into corresponding conditions on the Einstein tensor Gab
[8]. In this sense, the causal and geodesic structures of space-time are determined by the matter-
energy distribution. In this context, the energy conditions guarantee that the causality principle
is respected and suitable physical sources have to be considered [8]. However, in the extended
theories (1) not only does the additional term Hab modify the relation between the geometry
of gravity and matter, but also the dynamical coupling conveyed by g(Ψi) interferes in that
interplay.

In this work, we address the problem of the energy conditions in modified gravity [9]. This
issue is extremely delicate since a standard approach is to consider the gravitational field
equations as effective Einstein equations. More specifically, the further degrees of freedom carried
by these theories [10] can be recast as generalized geometrical fluids that have different meanings
with respect to the standard matter fluids generally adopted as sources of the field equations
[4]. While standard fluids generally obey standard equations of states, these “fictitious” fluids
can be related to scalar fields or further gravitational degrees of freedom, as in f(R) gravity. In
these cases, the physical properties may be ill-defined and the consequences can be dramatic,
since the causal and geodesic structures of the theory could present serious shortcomings as
well as the energy-momentum tensor could not be consistent with the Bianchi identities and the
conservation laws. Thus, we add a cautionary note of the results obtained in the literature [11].
In this work, we adopt the (−+ ++) signature and c = 1.

2. Energy conditions in modified theories of gravity.
The definition of the energy conditions entails an arbitrary flow which represents a generic
observer or a reference frame. In general, we consider a congruence of timelike curves whose
tangent 4-vector W a represents the velocity vector of a family of observers. Thus, the energy
conditions emerge directly from the geodesic structure of the space-time. More specifically,
consider the Raychaudhuri equation, given by [12]

θ̇ +
θ2

3
+ 2 (σ2 − ω2)− Ẇ a

;a = −RabW aW b . (2)

where 2σ2 is the square of the shear tensor, θ is the expansion scalar and ω2 is the square of
the vorticity tensor. This Eq. (2) carries only a geometrical meaning, as the quantities in it are
directly derived from the Ricci identities. It is only when we choose a particular theory that we
establish a relation between RabW

aW b in Eq. (2), and the energy-momentum tensor describing
matter fields [8]. One may also consider a null congruence ka and a vanishing vorticity ωab = 0,
which means that, in GR, it is possible to associate the null energy condition with the focusing
(attracting) characteristic of the spacetime geometry.

Taking into account the diffeomorphism invariance of the matter action, the covariant
conservation of the energy-momentum tensor, ∇aT ab = 0, is obtained. Thus, from the contracted
Bianchi identities, we derive the following conservation law

∇bHab = −8πG

g2
T ab∇bg . (3)
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The fact that Hab is a geometrical quantity, in the sense that it can be given by geometrical
invariants or scalar fields different from ordinary matter fields, implies that the imposition of a
specific energy condition on T ab carries an implication for the combination of Gab with Hab and
not just for the Einstein tensor. So we cannot obtain a simple geometrical implication from it,
as in GR. For instance, if we assume that the strong energy condition, TabW

aW b ≥ 1
2T W

aWa

holds, in GR it would mean, on the one hand, that RabW
aW b ≥ 0 and, on the other hand, given

Eq. (2), that the geodesics are focusing, and gravity possesses an attractive character. This is
one of the assumptions of the singularity theorems of Hawking and Penrose [8]. However in the
modified gravity context under consideration, this condition just states that

g(Ψi) (Rab +Hab −
1

2
gabH)W aWa ≥ 0 , (4)

which does not necessarily imply RabW
aW b ≥ 0 and hence we cannot straightforwardly conclude

that the satisfaction of the strong energy condition (SEC) is synonymous of the attractive nature
of gravity in the particular modified theory of gravity under consideration.

In the literature, the term Hab is usually treated as a correction to the energy-momentum
tensor, so that the meaning which is attributed to the energy conditions is the satisfaction of
a specific inequality using the combined quantity T abeff = T ab/g − Hab. It is thus misleading
to associate this effective energy-momentum tensor to the energy conditions, since they do not
emerge only from T ab but from the geometrical quantityHab, which is considered as an additional
energy-momentum tensor. However, if the modified theory of gravity under consideration
allows an equivalent description upon an appropriate conformal transformation, it then becomes
justified to associate the transformed Hab to the redefined T ab in the conformally transformed
Einstein frame. Several generalized theories of gravity can be redefined as GR plus a number
of appropriate fields coupled to matter by means of a conformal transformation in the so-called
Einstein frame. This is, for instance, the case for scalar-tensor gravity theories, for f(R) gravity,
etc [4].

In the original Jordan frame one has a separation between geometrical terms and standard
matter terms that can be cast as in (1), where Hab involves a mixture of both the scalar and
tensor gravitational fields. Upon a suitable conformal transformation we are able to cast the
field equations as G̃ab = 8πG T̃ eff

ab , where T̃ eff
ab = T̃Mab + T̃ϕab, and it thus makes sense to consider

T̃ eff
ab as an effective energy-momentum tensor, where T̃Mab is the transformed energy-momentum of

matter, and T̃ϕab is an energy-momentum tensor for the redefined scalar field ϕ which is coupled

to matter. Then conclusions about the properties of G̃ab such as whether it focuses geodesics
directly from those conditions holding on T̃ eff

ab , ignore the fact that Hab originally possesses a
geometrical character, and may be too hasty if not supported by the physical analysis of the
sources.

If we assume that in this frame the effective energy-momentum tensor T̃ eff
ab satisfies some

energy condition, for instance, the null energy condition (NEC), this implies that G̃ab has to
satisfy such a condition. Thus, it is possible to write the Raychaudhuri equation as

dθ̃

dv
= −

[
θ̃2

3
+ 2σ̃2 + R̃abk̃

ak̃b

]
, (5)

which enables us to conclude on the attractive/repulsive character of the given theory of gravity
in the Einstein frame. Reversing the conformal transformation, we can assess, in principle,
what happens in the original frame, namely, the Jordan frame. This operation requires
to know how the kinematical quantities, present in Eq. (5), transform under a conformal
transformation. This means that if gab → g̃ab = Ω2 gab and W a → W̃ a = Ω−1W a, we have
∇̃aW̃b = Ω∇aWb + Ω γcabWc +Wb∇aΩ, where γcab = δca∂bΩ/Ω + δcb∂aΩ/Ω− gab∂cΩ/Ω.
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From this result, it follows that we can pass from the Einstein to the Jordan frame by the
following transformations θ̃ab = Ω (θab − Ω̇hab), σ̃ab = Ωσab, ω̃ab = Ωωab, θ̃ = Ω−1 (θ − 3Ω̇),

respectively. Thus, Eq. (5) can finally be written as dθ̃
dv = θ̇

Ω2− θ
Ω2

Ω̇
Ω−

3
Ω (ln Ω)... The latter result

shows that whereas, in the Einstein frame, the NEC implies the attractive nature of gravity,
a similar implication does not necessarily follow in the Jordan frame. In fact, dθ̃/dv ≤ 0 only

implies that θ̇ ≤ Ω̇
Ωθ+ 3Ω (ln Ω).., and thus it depends on the sign of the term on the right-hand

side of the inequality. On the other hand, we see that R̃abk̃
ak̃b ≥ 0 does not necessarily entail

Rabk
akb ≥ 0. What we do indeed obtain is(

Ω−2Rab + 2∇a∇b ln Ω + 2∇a ln Ω∇b ln Ω
)
kakb ≥ 0 . (6)

This emphasizes that if, in one of the conformally related frames, we have attractive gravity
(due to the NEC), in the other frame neither the NEC is simultaneously satisfied, nor, in case
it is, this means that gravity will be straightforwardly attractive. This fact could be extremely
relevant in view of identifying a physical meaning of conformal transformations [4, 13, 14].

3. Example of a modified theory of gravity: Scalar-tensor gravity.
Consider scalar-tensor gravity [15] given by the action

S =
1

16π

∫ √
−gd4x

[
φR− ω(φ)

φ
φ,aφ

,a + 2φλ(φ)

]
+ SM , (7)

where SM is the standard matter part, the gravitational coupling is assumed variable and a
self-interaction potential is present. Varying this action with respect to the metric gab and the
scalar field φ yields the field equations (1), with Hab given by

Hab = −ω(φ)

φ2

[
φ;aφ;b −

1

2
gab φ;cφ

;c

]
− 1

φ
[φ;ab − gabφ;c

;c]− λ(φ)gab , (8)

and g(Ψi) = φ, which we shall assume positive, and

�φ+
2φ2λ′(φ)− 2φλ(φ)

2ω(φ) + 3
=

1

2ω(φ) + 3

[
8πGT − ω′(φ)φ;cφ

;c
]
, (9)

where T ≡ T cc is the trace of the matter energy-momentum tensor and G ≡ 2ω+4
2ω+3 is the

gravitational constant normalized to the Newton value. One also requires the conservation of
the matter content ∇aTab = 0, to preserve the equivalence principle. The archetype Brans-Dicke
theory is characterized by the restriction of ω(φ) being a constant, and of λ = λ′ = 0.

The above considerations on the energy conditions apply straightforwardly. In particular,
Eq. (4) is easily recovered like the other energy conditions. Since we assume φ > 0, we see that
the condition RabW

aW b ≥ 0 becomes

(Tab −
1

2
gab T )W aW b ≥ φ (Hab −

1

2
gabH)W aW b. (10)

and allows for the focusing of the time-like paths even when a mild violation of the energy
condition occurs. Matter may exhibit unusual thermodynamical features, e.g. including negative
pressures, and yet gravity remains attractive. Alternatively, repulsive gravity may occur for
common matter, i.e., for matter that satisfies all the energy conditions.
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In close analogy with the decomposition of the energy-momentum tensor with respect to the
vector field W a [8], one may consider the following the decomposition of the tensor Hab into the
parallel and orthogonal components to the time-like vector flow W a is given by

Hab = H||W
aW b +H⊥h

ab + 2H
(a
⊥ W

b) +H<ab>
⊥

=
1

φ

[
ρ̃W aW b + p̃hab + 2 q̃(aW b) + π̃ab

]
. (11)

where H|| = HabW
aW b, 3H⊥ = Hab h

ab, H<ab>
⊥ =

(
hachbd − 1

3h
abhcd

)
Hcd, and Ha

⊥ =

W c g Hcd h
ad, where H|| and H⊥ are scalars, Ha

⊥ is a vector and H<ab>
⊥ is a projected trace-free

symmetric tensor. Thus, the inequality (10) may be written as (ρ + 3p)/φ − (H|| + 3H⊥) ≥ 0,
where we have used the definitions

H|| = −ω(φ)

2φ2

(
3φ̇2 − hcd∇cφ∇cφ

)
− 1

φ
hcd∇c∇dφ+ λ(φ) , (12)

H⊥ = −ω(φ)

3φ2

(
φ̇2

2
− 1

2
hcd∇cφ∇cφ

)
− 1

2φ

(
W aW b∇c∇dφ−

1

3
hcd∇c∇dφ

)
− λ(φ).(13)

Thus, ω(φ) and λ(φ) define whether gravity is attractive or repulsive in the scalar-tensor
cosmological models. On the other hand, performing gab → ḡab = (φ/φ∗) gab, the condition
for gravity to be attractive with the redefined Ricci tensor becomes

R̃abW
aW b =

4π

φ∗
(ρ̄+ 3p̄) +

8π

φ∗

[
ϕ̇2 − Ṽ (ϕ)

]
≥ 0 , (14)

where ϕ =
∫ √

(2ω + 3)/2 d lnφ is the redefined scalar field, V (ϕ) = λ(φ(ϕ))/φ(ϕ) is the
rescaled potential, and ρ̄ = ρ/φ2, p̄ = p/φ2. The role of the functions ω(φ) and λ(φ) underlies
the result because the definitions of ϕ and V (ϕ) depend on them. In addition, in the Einstein
frame, the matter and the scalar field are interacting with each other as revealed by the scalar
field equation

ϕ̈+ θ̄ϕ̇ = −∂V (ϕ)

∂ϕ
− ∂ρ̄(ϕ, ā)

∂ϕ
. (15)

Thus, the dependence of the self-interacting potential V (ϕ), and the coupling ∂ϕρ̄ ∝ α(ϕ)a−3γ

is important, where α = (
√

2ω + 3)−1, when considering a perfect fluid with p̄ = (γ − 1)ρ̄. In a
cosmological setting, the interplay of the intervening components such that those which violate
the SEC dominate imply that gravity exhibits a transition from being attractive into becoming
repulsive. This feature is relevant in view of dark energy.

4. Discussion and conclusions.
We have discussed the formulation and the meaning of the energy conditions in the context
of modified theories of gravity. The procedure consists in disentangling the further degrees of
freedom that emerges with respect to GR and in grouping them as an effective energy-momentum
tensor of the form T ab/g −Hab where g(Ψi) is the effective coupling and Hab the contribution
due to scalar fields and/or curvature invariants of the given modified theory of gravity. Formally,
the weak, null, dominant and strong energy conditions can be rewritten as in GR. Despite of this
analogy, their meaning can be totally different with respect to GR since the causal structure,
geodesic structure and gravitational interaction may be altered.

A main role in this analysis is played by recasting the theory in the Einstein frame. However,
the energy conditions can assume a completely different meaning going back to the Jordan frame
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and then they could play a crucial role in identifying the physical frame as firstly pointed out in
[14]. On the other hand, geometrical implications change in the two frames since optical scalars
like σ, θ and ω can give rise to the convergence or divergence of geodesics. This means that
the physical meaning of a given extended theory strictly depends on the energy conditions and
initial conditions (in relation to the choice of the source [16]). From an observational point of
view, this fact could constitute a formidable tool to test the dark components since deviations
from standard GR could be put in evidence.
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