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Abstract. Adopting a procedure borrowed from the effective field theory prescriptions, we
study the dynamics of metric-affine theories of increasing order, that in the complete version
include invariants built from curvature, nonmetricity and torsion. We show that even including
terms obtained from nonmetricity and torsion to the second order density Lagrangian, the
connection lacks dynamics and acts as an auxiliary field that can be algebraically eliminated,
resulting in some extra interactions between metric and matter fields.

Introduction. The intriguing choice to treat alternative theories of gravity by means of the
Palatini approach, namely elevating the affine connection to the role of independent variable,
contains the seed of some interesting (usually under-explored) generalizations of General
Relativity, the metric-affine theories of gravity. The peculiar aspect of these theories is to
provide a natural way for matter fields to be coupled to the independent connection through
the covariant derivative built from the connection itself.

The simplest prototypical version of a metric-affine theory of gravity is the Einstein-Cartan-
Sciama-Kibble (ECSK) theory [1, 2]. In ECSK theory, it is still possible to show that the
independent (and not necessarily symmetric) connection can be algebraically eliminated in
favour of the metric and its derivatives, plus matter fields [3]. This means that the connection
is not propagating in the spacetime, but it is indissolubly confined inside matter configurations.

Interestingly, once the independent connection is introduced as a new variable, nothing
prevents us from adding further scalar invariants in the Einstein-Cartan action. The action
describing a metric-affine theory is assumed to be a suitable limit, at a certain order, of a some
fundamental theory; one can then follow the standard approach of effective field theory, and
consider all the operators having the dimension of the specific order of the approximation. In
the present case of ECSK, these operators are all the possible second order (namely, all the
operators of the same dimension of the scalar curvature) invariants that can be formulated
starting from the structures (torsion and nonmetricity) induced by the non-Riemannian nature
of the actual spacetime.

Generalized metric-affine theories of gravity have been recently studied from different
perspectives. Apart from the huge amount of work done in Einstein-Cartan gravity, progress was
also made for what concerns the higher order versions of these theories [4, 5], also attracted by
the tantalizing possibility of relaxing the theoretical puzzles associated with the recent discovery
of accelerated expansion. The dynamical content of a metric-affine theory of gravity was already
analyzed in [6] including the set of second order corrections built with torsion tensor. Here we
are going to extend the previous result to the most general second order metric-affine theory of
gravity, including quadratic operators in nonmetricity and torsion [7]. Note that, as it will be
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showed on the basis of a dimensional analysis, this will not include the quadratic Ricci terms,
whose presence would introduce brevi manu new dynamical degrees of freedom.

The general action. We refer the reader to [7] for the notation and the conventions used also
here. In a Lagrangian formulation of a metric-affine theory of gravity, the general action will be
of the form

S =

∫
d4x
√
−g[LG(gµν ,Γ

γ
αβ) + LM (gµν ,Γ

γ
αβ, ψ)] , (1)

where g is the determinant of the metric, LG(gµν ,Γ
γ
αβ) and LM (gµν ,Γ

γ
αβ, ψ) are respectively

the gravitational and the matter Lagrangian density (where we have made explicit the
dependence of the matter from the connection), and ψ is a convenient way to refer collectively
to the matter fields included in the theory under scrutiny.

We want to study the dynamics of the most general lowest order theory associated with
the gravitational Lagrangian LG(gµν ,Γ

γ
αβ). Our prescription for constructing such general

action is based on power counting of the dimensions of the gravitational terms. In natural
units, the metric tensor is adimensional, the connection has the dimension of the inverse of
a length and consequently the Ricci tensor has dimension [length]−2. Since the total action
must be dimensionless, the Lagrangian density must have dimension [length]−4. We can think
the Lagrangian density as the product of a geometrical scalar invariant times an opportune
overall constant, in the form of a power of a length LP , to adjust the total dimension. For the
Einstein-Cartan action, for example, the correct Lagrangian density is LECG = R/(16πL2

P ).
Discarding for simplicity a cosmological constant term, it is not possible to build a Lagrangian

density whose geometrical factor has dimension [length]−1. This is trivially seen for the Ricci
tensor case that is already of dimension [length]−2. Nonmetricity and torsion tensor are also of
dimension [length]−1, but it is not possible to form a scalar invariant from just one rank-three
tensor saturated with the metric (rank two); for such reason they will appear only as quadratic
terms, hence only as terms of order [length]−2, that is at the same order of the Ricci scalar R.

The most general gravitational action with a Lagrangian density of dimension [length]−2 is

SG =
1

16πL2
P

∫
d4x
√
−g

(
R+

∑
i

aiQ
2
(i) +

∑
i

biQ(i) ∗ S(i) +
∑
i

ciS
2
(i)

)
, (2)

where the last three terms are a symbolic representation of all the possible independent
contractions that can be obtained from nonmetricity Q and torsion tensor S (the symbol “*”
in (2) indicates the tensorial product between torsion and nonmetricity). Using the symmetries
of these two (Q is symmetric with respect to its last two indices, while S is antisymmetric with
respect to its first two indices), eleven different combinations are found (see [7]).

It is interesting to note that the full Lagrangian density is free of terms obtained by
the covariant derivative of nonmetricity and torsion. The reason is easily understood. The
independent connection can be decomposed in the Levi-Civita connection of the metric plus a
combination of terms in Q and S called the distortion tensor

Kαβ
γ =

1

2
(−Qαγβ +Qγβα −Qβαγ) + Sαβ

γ − Sβγα + Sγαβ . (3)

Using this last condition, one can always think to write the covariant derivative with respect
to the independent Γ as a Riemannian part (namely a covariant derivative with respect to
the metric) plus another one encoding the non-Riemannian structures of the spacetime; the
Riemannian derivative leads to a total divergence resulting in a surface term, the second part
is instead constituted of contractions of the distortion tensor with Q and S, i.e. (quadratic)
combinations of torsion and nonmetricity, already included in the general action above.
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The dynamical content of the independent connection. We are mostly interested in solving
the Palatini field equation for the connection and to re-express it as a function of matter fields
plus Christoffel symbols of the metric. Without loss of generality, the global structure of this
field equation is

1√
−g

[
Γ
∇λ (
√
−ggµν)−

Γ
∇σ (

√
−ggσµ)δνλ] +

∑
j

αj Q
(j) +

∑
j

βj S
(j) = (8πL2

P )∆µν
λ , (4)

where∑
j

αj Q
(j) = α1δ

µ
λQ

ν
α
α + α2g

µνQα
α
λ + α3δ

ν
λQ

α
α
µ + α4Q

µν
λ + α5Qλ

νµ + α6Q
νµ
λ +

+α7δ
µ
λQ

α
α
ν + α8g

µνQλα
α + α9δ

ν
λQ

µ
α
α , (5)

∑
j

βj S
(j) = β1g

µνSλα
α + β2δ

ν
λS

µ
α
α + β3δ

µ
λS

ν
α
α + β4S

ν
λ
µ + β5S

νµ
λ + β6S

µ
λ
ν , (6)

and αj and βj are some linear combinations of the primitive coefficients ai, bi and ci used
in equation (2). The right hand side of (4) is given by the so-called hypermomentum tensor

∆µν
λ ≡ − 2√

−g
δSM (g,Γ,ψ)
δΓλµν

, that is, the tensor describing the intrinsic properties of matter as spin

angular momentum, shear and dilation current [8]. Also note that

1√
−g

[
Γ
∇λ (
√
−ggµν)−

Γ
∇σ (

√
−ggσµ)δνλ] = δνλQα

αµ +
1

2
gµνQλα

α −Qλµν −
1

2
δνλQ

µ
β
β , (7)

that is, we can reformulate the Palatini equation just in terms of an expression linear in the
torsion tensor and in the nonmetricity tensor, that we can symbolically rewrite as∑

j

α̃j Q
(j) +

∑
j

βj S
(j) = (8πL2

P )∆µν
λ , (8)

with α̃3 = α3 + 1, α̃5 = α5 − 1, α̃8 = α8 + 1
2 , α̃9 = α9 − 1

2 and α̃j 6=3,5,8,9 = αj . We can contract

this equation in three different independent ways: with the metric gµν , with δλµ and with δλν ,
resulting in a simple linear system whose solution can be written as follows

Qαρα = (8πL2
P )(A1∆α

αρ +B1∆αρ
α + C1∆ρα

α) ,

Qραα = (8πL2
P )(A2∆α

αρ +B2∆αρ
α + C2∆ρα

α) ,

Sραα = (8πL2
P )(A3∆α

αρ +B3∆αρ
α + C3∆ρα

α) . (9)

where Ai, Bi and Ci are some elementary, but rather lenghty, expressions of the coefficients α̃i
and βi. We can now use these three equations to substitute the corresponding terms in (8); their
contribution is fully determined by the matter content of the theory, so we can move them on
the right hand side, where they are collectively denoted as “[f(traces of ∆)]µνλ”. What remains
is the equation

α̃4Q
µν
λ + α̃5Qλ

νµ + α̃6Q
νµ
λ + β4S

ν
λ
µ + β5S

νµ
λ + β6S

µ
λ
ν = (8πL2

P )∆µν
λ + [f(traces of ∆)]µνλ.

(10)
The antisymmetric part with respect to {µν} pairs of indices of the previous equation gives an
equation to express the torsion tensor in terms of the antisymmetric part of nonmetricity tensor
plus terms in hypermomenta

β5S
νµ
λ + (β6 − β4)S[µ

λ
ν] =(α̃6 − α̃4)Q[µν]

λ + (8πL2
P )∆

[µν]
λ + [f(traces of ∆)]µνλ ≡ Θµν

λ , (11)

Spanish Relativity Meeting (ERE 2014): almost 100 years after Einstein’s revolution IOP Publishing
Journal of Physics: Conference Series 600 (2015) 012043 doi:10.1088/1742-6596/600/1/012043

3



that can be solved considering a suitable combination of the three different permutations of the
indices (µνλ)→ (λµν) and (µνλ)→ (λνµ). At the end, we get:

Sµνλ =
2β5Θµνλ − β4(Θµνλ −Θλµν + Θλνµ) + β6(Θµνλ −Θλµν + Θλνµ)

(β4 + 2β5 − β6)(β4 − β5 − β6)

= [f̂(∆)][µν]λ −
2(α̃6 − α̃4)

β4 + 2β5 − β6
Q[µν]λ . (12)

Since we are not interested in the exact form of the contribution of matter to the torsion tensor,
we have here defined another tensor [f̂(∆)]µνλ that includes all the contributions coming from
the hypermomenta in Θµνλ. Note that the tensor Θµνλ, and hence the torsion tensor Sµνλ, is
linear in nonmetricity Qµνλ. Using this expression in equation (10) to eliminate the torsion, we
can rewrite it in the form

ξ1Qµνλ + ξ2Qλνµ + ξ3Qνµλ = [f(∆)µνλ] , (13)

where ξi ≡ ξi(α̃j , βk) are some coefficients determined by the equations (10) and (12) and

[f(∆)]µνλ is defined, in analogy to f and f̂ , as the collective contribution from matter to the
right hand side of the expression; equation (13) can be now solved with respect to Qµνλ adding
and subtracting the further two equations obtained permuting the indices (µνλ) → (λµν) and
(µνλ)→ (νµλ). Having expressed nonmetricity in terms of just matter fields, we can reuse it in
the equation for torsion to have another expression using just the matter fields. At the end, the
total connection, that can be written in terms of Christoffel symbols of the metric plus distortion
(where we recall that the distortion tensor (3) is a combination of nonmetricity and torsion),
is hence reduced to a (not trivial) expression of metric with its derivatives and of matter fields
under the guise of the hypermomenta combination.

An important point to stress is the following. Given a matter Lagrangian that does contain
at most linear terms in the covariant derivative, and hence linear terms in the connection, our
demonstration shows the lack of dynamics, and the consequent reduction to an auxiliary field,
of Γλµν . On the other hand, some specific and exotic forms of matter can evade this fulfillment.
Anyway, equations of motion of matter fields are required to be at most of second order, which
forces the matter Lagrangian to contain only linear derivatives. Therefore, even in the most
convoluted case, the hypermomentum tensor will be algebraic in the connection and the latter
can be still eliminated at the component level.

What is the physical consequence of the lack of dynamics of the connection? Once it has been
shown that the connection can be algebraically written in terms of derivatives of the metric and
matter fields, it is clear that we can substitute all the terms explicitly dependent on connection
(or torsion, or nonmetricity) in the field equation obtained varying with respect to the metric.
Due to the extreme length of the equation, we will omit to write it here completely. It is anyway
clear that, varying the general action (2) with respect to the metric, we will basically obtain
terms that are quadratic in the connection (torsion/nonmetricity), and hence that will carry
extra contributions of the kind “(hypermomentum)2” to the effective stress energy tensor. This
is similar to what happens in Einstein-Cartan theory as shown in [3], with the main difference
that now, because of the presence of nonmetricity terms, the field equations will contain new
terms of different nature, coupling matter fields (in the form of hypermomenta) to Christoffel
symbols.

Higher orders terms. It is an easy task to argue that scalar Lagrangian corrections of the order
[length]−2n, with integer n, are the only ones that can be written starting from our elementary
geometrical objects. This is essentially due to the fact that the only quantities carrying dimension
[length]−1 are odd-rank objects (torsion, nonmetricity and covariant derivative), and they cannot
be trivially saturated with the (even-rank) metric. For such reason, the next-order invariants
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are all the possible terms with dimension [length]−4. It goes beyond the scope of this paper
to enumerate all the possible invariants of the fourth order (just for comparison, it should
be taken into account that in a spacetime with torsion and vanishing nonmetricity there are
151 independent scalar invariants [9]). It is anyway possible to show that these terms are
inevitably introducing further degrees of freedom, even assuming the simplifying hypothesis of
matter fields not coupled to the connection. It is what for example occurs for the generalized
Palatini theories considered in [10], whose specific choice of a Lagrangian density of the form
R + RµνRκλ(agµκgνλ + bgµλgνκ) has been shown to be equivalent to Einstein gravity plus a
(dynamical) Proca vector field.

A rather peculiar case is the metric-affine version of f(R) theories of gravity [5, 11]. The
Ricci scalar R is invariant under the projective transformation

Γρµν → Γρµν + δρµξν , (14)

where ξν is an arbitrary covariant vector field. Consequently also any function of R will respect
the same symmetry. While this issue is not a problem when matter does not couple to the
connection, for a metric-affine theory this feature can lead to inconsistent field equations. In
general the matter Lagrangian is not projective invariant, neither it is reasonable to restrict the
matter content to those fields that are fulfilling this property. To circumvent the problem, it is
necessary to break the projective invariance of the gravitational sector, fixing the four degrees
of freedom of the transformation (related to the four components of the vector field ξν) by a
Lagrange multiplier. Note that the projective invariance is automatically broken if distortion-
squared terms and, a fortiori, higher order curvature invariants are added to the action; such
theories have been shown already to carry further dynamics.

Since the number of degrees of freedom to be fixed is four, and since the projective
transformation suggests that the goal of breaking projective invariance should be achieved by
constraining the connection, it is reasonable to propose an additional term in the gravitational
Lagrangian involving a contraction of either nonmetricity tensor or torsion tensor. As already
shown in [12], the term of the form AµQµ ≡ AµgαβQµαβ, previously proposed in [13] is not
suitable for a generic f(R) metric-affine theories, since it requires the function of the Ricci
scalar to reduce to the Einstein-Cartan term and the theory results to have no solutions of
the field equations whenever the f(R) is non-linear. Interestingly, the result is still valid
even if we try to fix the four degrees of freedom through the other independent contraction
of the nonmetricity tensor, namely adding to the Lagrangian density the Lagrange multiplier
the BµQ̃µ ≡ BµgαβQαβµ, as it can be easily proved: in a torsion-less theory without matter
fields, the independent Levi-Civita connection is written as [7]

Γγαβ = { γαβ}+
1

2
(−Qαγβ +Qγβα −Qβαγ) ; (15)

on the other hand, the field equation of the connection reduces to the usual f(R)-Palatini
equation1, that can be solved with respect to the connection to give

Γγαβ = { γαβ}+
1

2f ′(R)
(2∂(αf

′(R)δγβ) − g
γσgαβ∂σf

′(R)) . (16)

Equating (15) and (16) gives a condition expressing the contribution to nonmetricity coming
from the gravitational sector of the theory

−Qαγβ +Qγβα −Qβαγ =
1

f ′(R)
(2∂(αf

′(R)δγβ) − g
γσgαβ∂σf

′(R)) ; (17)

1 The condition about the absence of matter fields implies also the vanishing of the Lagrange multipliers Aµ and
Bµ that can be proven to be proportional to the trace of the hypermomentum tensor.
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we can find two independent expressions by contracting respectively α and β indices or α and
γ in the last equation; the resulting conditions being

Qγ − 2Q̃γ = − 2

f ′(R)
∂γf

′(R) ,

−Qβ =
4

f ′(R)
∂βf

′(R) . (18)

It is now clear that both the constraint Qµ = 0 or Q̃µ = 0 lead to the same result

Qµ = Q̃µ = ∂µf
′(R) = 0, that makes the theory obviously inconsistent since it forces the

function f(R) to be at most linear.
A viable alternative [5, 6] is the theory obtained constraining the trace of the torsion tensor

Sµρ
ρ through the term CµSµ ≡ CµSµρρ

S =
1

16πL2
P

∫
d4x
√
−g(f(R) + CµSµ) + SM (gµν ,Γ

γ
αβ, ψ) , (19)

whose field equations are written as

f ′(R)R(µν) −
1

2
f(R)gµν = (8πL2

P )Tµν ,

−
Γ
∇λ (
√
−gf ′gµν)+

Γ
∇σ

(√
−gf ′gσµ

)
δνλ + 2

√
−gf ′Sµ ν

λ = (8πL2
P )
√
−g

(
∆µν

λ −
2

3
∆σ[ν

σδ
µ]
λ

)
,

S α
αµ = 0 . (20)

Note that this choice is fully consistent: if we require vacuum solutions, the second of equations

(20) simply reduces to the two conditions Sµνρ = 0 and
Γ
∇λ (

√
−gf ′(R)gµν) = 0, that are the

usual field equations found in Palatini-f(R) theories of gravity. On the other side, this version
of f(R)-metric-affine theories has the further feature to avoid propagation of torsion waves in
vacuum. In fact (modulo the dependence of the matter Lagrangian on the covariant derivative,
that must be at most linear), taking the antisymmetric part of second equation in (20) with
respect to µ and ν, and adding suitable permutations of the obtained expression, we can show
that torsion tensor is

Sµν
λ =

8πL2
P

f ′(R)
gρλ(∆[ρµ]ν + ∆[νρ]µ −∆[µν]ρ) , (21)

namely, the torsion tensor is algebraically defined by the antisymmetric part of the
hypermomentum tensor, ∆[µν]

λ.
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