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Abstract. We study geometric and algebraic properties of extended Kerr–Schild spacetimes
(xKS), i.e. an extension of the Kerr–Schild (KS) ansatz where, in addition to the null KS vector,
a spacelike vector field appears in the metric. In contrast to the KS case, it turns out that xKS
spacetimes with a geodetic KS vector are not necessarily algebraically special and we obtain,
in general, only a necessary condition under which the KS vector is geodetic. However, it is
shown that this condition becomes sufficient if we appropriately restrict the geometry of the null
and spacelike vector fields. Examples of xKS spacetimes belonging to the Kundt class and also
expanding xKS spacetimes, namely the CCLP black hole, are provided and briefly discussed.

1. Kerr–Schild spacetimes
The Einstein field equations are a very complex system of partial differential equations of the
2nd order and finding exact solutions is a considerably non-trivial task especially in dimension
n > 4. A possible approach to this problem is to assume an appropriate form of the unknown
metric and an important example of such a technique is the Kerr–Schild (KS) ansatz [1]

gab = ηab − 2Hkakb, kak
a = 0, (1)

where ηab is a flat background metric and the KS vector k is null with respect to both gab and
ηab. This choice ensures a simple form of the inverse metric

gab = ηab + 2Hkakb (2)

and therefore the full metric corresponds exactly to its linear approximation around the
flat background. The cosmological constant Λ can be included by taking the corresponding
maximally symmetric spacetime as the background metric ḡab

gab = ḡab − 2Hkakb. (3)

The analysis of metrics (3) in [2, 3] shows that if k is geodetic, these metrics are algebraically
special1 with k being the multiple Weyl aligned null direction. It also turns out that non-
expanding Einstein KS spacetimes are of the Weyl type N and belong to the Kundt class, on

1 In the context of the algebraic classification of the Weyl tensor in arbitrary dimension based on the existence
of preferred null directions and their multiplicity, see e.g. the recent review [4].
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the other hand, expanding Einstein KS spacetimes are of genuine types II or D and the optical
matrix2 ρij ≡ `a;bma

(i)m
b
(j) satisfies the optical constraint [2, 7]

ρikρjk =
ρlkρlk

(n− 2)θ
ρ(ij) (4)

implying

ρij = diag

(
M1, . . . ,Mp,

1

r
, . . . ,

1

r
, 0, . . . , 0

)
, (5)

where

Mµ =
1

r2 + a2µ

[
r aµ
−aµ r

]
. (6)

Despite the simplicity of the KS ansatz (3), the class of KS metrics contains many physically
interesting exact solutions of four-dimensional general relativity and also some of their higher
dimensional analogues such as, for instance, the Schwarzschild black hole, the Vaidya radiating
star, the Kinnersley photon rocket, the Kerr–(A)dS rotating black hole and type N pp-waves,
see e.g. [8]. In fact, the KS ansatz has led to the discovery of the rotating black holes in higher
dimensional general relativity with a (non-)vanishing cosmological constant [9, 10], respectively,
and has been successfully applied also in the context of higher order gravities such as the Gauss–
Bonnet theory [11] or quadratic gravity [12, 13].

We are motivated to generalize the KS ansatz for several reasons. More general ansatz could
lead to exact solutions of more general Weyl types, e.g. black rings which are of type Ii. Another
reason is that although the Kerr–Newman black hole can be cast to the KS form

ηab dxa dxb = −dt2 + dx2 + dy2 + dz2 (7)

ka dxa = dt+
rx+ ay

r2 + a2
dx+

ry − ax
r2 + a2

dy +
z

r
dz (8)

H = − r2

r4 + a2z2

(
Mr − Q2

2

)
, A =

Qr3

r4 + a2z2
k, (9)

an exact charged rotating black hole solution of higher dimensional Einstein–Maxwell theory
is unknown. It is also known that a straightforward generalization of five-dimensional rotating
black hole solutions of general relativity in the KS form to the Gauss–Bonnet theory [11] do not
represent rotating black holes [14]. Moreover, as will be mentioned later, some already known
exact solutions can be cast to an extended KS form.

In the following, we briefly present our main results published in [15].

2. Extended Kerr–Schild spacetimes
Let us consider extended Kerr–Schild (xKS) metrics as an extension of the KS ansatz in the
form

gab = ḡab − 2Hkakb − 2Kk(amb) (10)

involving an additional unit spacelike vector m

kaka = 0, kama = 0, mama = 1, (11)

where ḡab is a maximally symmetric background metric

ḡab = Ωηab, ηab dxadxb = −dt2 + dx21 + . . .+ dx2n−1 (12)

2 Throughout the paper, we employ the higher dimensional generalization of the Newman–Penrose formalism
[5, 6].
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with a corresponding conformal factor

ΩM = 1, ΩdS = −(n− 2)(n− 1)

2Λx12
, ΩAdS =

(n− 2)(n− 1)

2Λt2
. (13)

The inverse metric can be expressed as

gab = ḡab +
(
2H−K2

)
kakb + 2Kk(amb). (14)

It is appropriate to identify the vectors k, m with the null and spacelike frame vectors

k ≡ `, m ≡m(2) (15)

and define indices ı̃, ̃ = 3, . . . , n− 1 so that m is excluded in the notation m(ı̃).

2.1. Geodeticity of the KS vector k
In the case of KS spacetimes, the null KS vector k is geodetic if and only if the boost weight 2
component of the Ricci tensor R00 = Rabk

akb vanishes. For the xKS metric (10), R00 reads

R00 = 2HLi0Li0 −
1

2
K2Lı̃0Lı̃0 +K(2Li(iL2)0 + Lı̃0Mı̃0 + DL20) + 2DKL20 (16)

and therefore R00 vanishes if k is geodetic, but the converse implication does not hold.
If we appropriately restrict the arbitrariness in the choice of the vectors k and m

k[a;b]m
b = 0, (ζm[a);b]k

b = 0, (17)

which can be expressed in terms of the Lie derivative as

Lmka = 0, Lk(ζma) = 0, (18)

the boost weight 2 component of the Ricci tensor reduces to

R00 =

(
2H− 1

2
K2

)
Lı̃0Lı̃0. (19)

Therefore, assuming K2 6= 4H, the KS vector k is geodetic if and only if R00 vanishes.
Note that, in the context of the Einstein field equations the vanishing of the boost weight 2

component of the Ricci tensor is related to the vanishing of the boost weight 2 component of
the energy-momentum tensor R00 = κT00 and the case R00 = 0 not only includes the vacuum
case, i.e. Einstein spacetimes

Rab =
2Λ

n− 2
gab, (20)

but also an aligned Maxwell field

Rab =
κ

4

(
F caFcb −

1

2(n− 2)
F 2gab

)
, Fabk

b ∝ ka, (21)

or aligned pure radiation
Rab = Φkakb. (22)

Note also that the relation (18) is compatible with the optical constraint (4) if m does not
correspond to any 2 × 2 block Mµ in the optical matrix (5) implying k and m are surface
forming.
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2.2. Algebraic types of xKS spacetimes
As already mentioned above, KS spacetimes (3) of any dimension with a geodetic k are
algebraically special. On the other hand, xKS spacetimes (10) with a geodetic k are in general
of Weyl type I with k being the Weyl aligned null direction. However, in case one assumes the
relation (18) between the vectors k and m holds, xKS spacetimes are algebraically special with
R0i = 0 if and only if the optical matrix ρij and the function K take one of the following forms

ρ
(1)
ij = 0, K(1) = c1r + c2, (23)

ρ
(2)
ij = diag

(
1

r
, 0, . . . , 0

)
, K(2) = c1r +

c2
r
, (24)

ρ
(3)
ij =

1

1 + c21r
2

diag

([
1
r c1
c1 c21r

]
, 0, . . . , 0

)
, K(3) =

√
1 + c21r

2

c2r
, c1 6= 0, (25)

ρ
(4)
ij = diag

(
0,

1

r
,

1

r + c2
, . . . ,

1

r + cp
, 0, . . . , 0

)
, rank ρ

(4)
ij ≥ 1, K(4) = c1, (26)

ρ
(5)
ij = diag

(
1

r
,

1

r + c2
, . . . ,

1

r + cp
, 0, . . . , 0

)
, rank ρ

(5)
ij ≥ 2, K(5) = c1r, (27)

ρ
(6)
ij = diag

(
1

r
,M, . . . ,M

)
, K(6) = c1r +

c2
r
, (c1 6= 0) ∧ (c2 6= 0), (28)

M =

[
s A
−A s

]
, s =

r

r2 + c2
c1

, A =

√
c2
c1

1

r2 + c2
c1

, (29)

where r is an affine parameter along the null geodesics k and ci are arbitrary scalar functions
independent of r.

3. Kundt xKS spacetimes
It turns out that for Kundt xKS metrics the following statements are equivalent:

(i) the spacetime is algebraically special,

(ii) the boost weight 1 components of the Ricci tensor R0i ≡ Rabkamb
(i) = 0 vanish,

(iii) the function K and the Ricci rotation coefficients Mı̃0 take one of the forms

K = d
√

(r + b)2 + µ̃µ̃, Mı̃0 =
µı̃

(r + b)2 + µ̃µ̃
, (30)

or
K = fr + e, Mı̃0 = 0, (31)

where r is an affine parameter along the null non-expanding, non-shearing, and non-twisting
geodesics k and b, d, e, f , µı̃ are arbitrary scalar functions independent of r.

3.1. Examples of Kundt xKS spacetimes
The most straightforward examples of Kundt xKS spacetimes are metrics with vanishing scalar
invariants (VSI) [16, 17]

ds2 = 2du dr + δij dxi dxj + 2H(u, r, xk) du2 + 2Wi(u, r, x
k) dudxi (32)

which are of the Weyl type III and clearly admit the xKS form (10) with the flat background
ḡab dxa dxb = 2dudr + δij dxi dxj where

H = −H, ka dxa = du, K = −
√
WiWi, ma dxa =

Wi dxi√
WjWj

. (33)
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Table 1. The relation of the class of higher dimensional Ricci-flat pp-waves to the classes of
KS, xKS, and VSI spacetimes depending on the Weyl types.

Weyl type KS xKS VSI

N X X X
III × X X
II × only CSI ×

The class of pp-wave spacetimes is geometrically defined as metrics admitting a covariantly
constant null vector field which can be written in the form [18]

ds2 = 2du
[
dr +H(u, xk) du+Wi(u, x

k) dxi
]

+ gij(u, x
k) dxi dxj (34)

It can be shown that Einstein pp-waves are Ricci-flat and of the Weyl type II. Type N Ricci-flat
pp-waves admit the KS form. Type III Ricci-flat pp-waves are VSI and therefore belong to the
class of xKS spacetimes. Type II Ricci-flat pp-waves can be cast to the xKS form only if they
have constant scalar invariants (CSI). The situation is summarized in table 1.

Note that four dimensional Ricci-flat pp-waves are of the Weyl type N, belong to the VSI
class and take the KS form.

4. Example of expanding xKS spacetimes
The Chong–Cvetič–Lü–Pope charged rotating black hole [19] can be cast to the xKS form [20]

ḡab dxa dxb = −
(
1− λr2

) ∆

ΞaΞb
dt2 − 2dr

(
∆

ΞaΞb
dt− a sin2 θ

Ξa
dφ− b cos2 θ

Ξb
dψ

)
+
ρ2

∆
dθ2 +

(
r2 + a2

)
sin2 θ

Ξa
dφ2 +

(
r2 + b2

)
cos2 θ

Ξb
dψ2, (35)

ka dxa = − ∆

ΞaΞb
dt+

a sin2 θ

Ξa
dφ+

b cos2 θ

Ξb
dψ, (36)

m̂a dxa = λab
∆

ΞaΞb
dt+

b sin2 θ

Ξa
dφ+

a cos2 θ

Ξb
dψ, (37)

H = −M
ρ2

+
Q2

2ρ4
, K = −Qν

rρ2
, A = −

√
3Q

2ρ
k (38)

where a and b are spins, M and Q is mass and charge, respectively, ρ2 = r2 + ν2, ∆ = 1 + λν2,

Ξa = 1 + λa2, Ξb = 1 + λb2, and ν =
√
a2 cos2 θ + b2 sin2 θ. It is a solution of 5D minimal

gauged supergravity which is equivalent to the Einstein–Maxwell–Chern–Simons theory with
the Chern–Simons coefficient χ = 1 and Λ < 0

Rab −
1

2
Rgab + Λgab = 2FacF

c
b −

1

2
FcdF

cdgab, ∇bF ab +
χ

2
√

3
√
−g

εabcdeFbcFde = 0. (39)

It can be shown that the CCLP black hole is of the Weyl type Ii and the vectors k and m
satisfy the relation (18). Interestingly, the optical matrix takes the same form as for the 5D
Kerr–(A)dS black hole

ρij =

1
r 0 0
0 r

ρ2
ν
ρ2

0 − ν
ρ2

r
ρ2

 (40)
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and therefore the optical constraint (4) is met and the vectors k and m are surface-forming. In
the case of the uncharged (Q = 0) and static (ν = 0) limit, the metric reduces to the KS form
(3) and is of the Weyl type D.

5. Conclusion
We believe that the xKS form (10) may lead to the discovery of new solutions of general relativity
in higher dimensions in vacuum and also in the presence of matter fields aligned with the KS
vector k, such as aligned Maxwell field. Using the xKS ansatz, one could also obtain new vacuum
solutions of more general theories of gravity, for instance, the Gauss–Bonnet theory or Lovelock
gravities of higher order. We hope that the results of our analysis of xKS spacetimes [15] will
be useful for finding such new solutions in a subsequent work.
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[12] Güllü I, Gürses M, Şişman T Ç and Tekin B 2011 Phys. Rev. D83 084015 (Preprint 1102.1921)
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