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Abstract. We have studied the stability in some anisotropic and isotropic matter
configurations, by using the concept of cracking in General Relativity, which was conceived
as an alternative and different approach to detect instabilities. It is based in the analysis of
the radial forces that appear on the system after a perturbation capable of taking it out of its
equilibrium state. We have studied the effects of local density perturbations on systems with
“barotropic” equations of state. The considerations of the perturbations on the gradient of
pressure lead to very different results than the previous works, and have found that not only
anisotropic models may present cracking (or overturning), but it can also occur in isotropic
matter configurations.

1. Introduction

The concepts of cracking and overturning were developed by Herrera and co-workers [1, 2, 3],
with the aim of constituting an alternative way to determine instabilities on anisotropic matter
configurations, and is complementary to the traditional formalism of Chandrasekhar [5, 6, 7].
The idea of studying instabilities around the appearance of cracking is very intuitive, it comes
from the evaluation of the distribution of radial forces that appear on the system due to
perturbations, and if there is a change of sign on this forces then it said that cracking occurs and
we have an unstable configuration. The type of perturbation that are considered are capable of
taking the system out of is equilibrium state so this distribution of forces may appear.

In the first contributions where the stability was studied with the cracking criterion [1, 2, 3],
were analysed independent and simultaneous perturbations on the density and of the anisotropy
of some spherical solutions, were it was assumed that the perturbations did not change the
gradient of pressure. In a more recent contribution [8], were studied perturbations of the density
on systems governed by barotropic equations of state, were the anistotropy was affected though
the equations of state and not independently, however the type of perturbations were constant
since they did not change the gradient of pressure.

In this paper, we will discuss how a different type of perturbations can be considered, following
[8] we will also consider barotropic equations of state and will analyse perturbations of the
density. The mean difference is that we want to consider local perturbations of the density, that
are localized on a reduced region of the sphere. We will show the difference with the previous
works when the effects of a local perturbation are considered. In section 2, we will describe the
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concepts of cracking and overturning, and will summarize the contributions around this topic.
In section 3 will show the implications of local pertubations of the density in the stability of
anisotropic and isotropic matter configurations using the concept of cracking.

2. Cracking of anisotropic compact objects
Let us consider an static spherically symmetric metric,

ds? = e2/(1) 2 — 2M(1) qp2 _ 2 (d92 + sin? 9d¢2) , (1)
and an anisotropic fluid,
Ty = (p+ PL)uyuy, — P gy, + (P — PL)v,v,, (2)
where
u, = (e”,0,0,0), v, = (0, —¢*,0,0), (3)

p represents the energy density, P the radial pressure, and P| the tangential pressure of the
fluid. If the system is in equilibrium, the generalization of the Tolman-Oppenheimer-Volkoff
equation for an anisotropic fluid is satisfied,

m +4rr3P  2(P, — P)
r(r—2m) r

dp
- P
R dr+(p+ )

; (4)

with R = 0, since this term represents the net radial forces in the system and must vanish if
it is in equilibrium. Herrera and co-workers [1, 2, 3| stated that if there is a perturbation in
the system capable of taking it out of the equilibrium state, then (4) may not be satisfied and
a distribution of radial forces dR might appear. This authors defined cracking or overturning
as change of sign within the configuration of this distribution of forces that appear after a
perturbation in one or more variables of the system. Cracking occurs when the force is directed
inward in the inner part of the configuration and changes sing at some point and then it is
directed outward. Overturning occurs in the opposite case.

In the series of papers [1, 2, 3], were analysed simultaneous and independent perturbations of
the density and the anisotropy which occurred in all the configuration and leaved the gradient of
pressure invariant. As a concluding remark, they found that the perturbations of the anisotropy
and not in the density may lead to cracking. By a different approach, [8] studied perturbations of
the density p — p+9Jp in systems with barotropic equations of stated; i.e, P = P(p), P. = P, (p)
which perturbed the anisotropy of the system according to the equations and not independently.
This perturbations were constant and as consequence did not affect the pressure gradient. As a
result, they obtained the following stability criterion

—-1< Uﬁ_ — 2 <0 Potencially stable
—1<v? —v?* <1 = (5)
0< Uﬁ_ -2 <1 Potencially instable

where v? and vi are defined by

dr 4Py
-5

v ’Ui = dp Y (6)

and denote the radial sound speed and the tangential sound speed, respectively.
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Figure 1. On the left density and pressure and on the right force distribution, R = IR /op, for
the isotropic Mehra-Model [9] with p = 0.1 (solid line) and p = 0.2 (dashed line). The p = 0.2
curve presents a cracking point r. &~ 0.35 which illustrates that cracking instability can be found
for isotropic matter configurations.

3. Local Perturbations of the density

In this section, we will discuss the effects of local perturbations of the density in barotropic matter
configurations and how the results differ from the results of the previous works. Following [8]
we will consider systems with equations of state of the form P = P(p) and P, = P, (p), where
a local perturbation of the density occurs; i.e, where the perturbation depends on the radial
coordinate,

p—p+op(r), (7)

and will be represented by a compact support function with the aims of representing a fluctuation
that occurs in a finite and reduced part of the configuration, as any reasonable physical
perturbation.

Now, since the pressures are related to the density through the equations of state, as well as
the mass of the system,

m(p) = 4x [ plr)iar, (8)

the effects of the perturbation on the radial pressure and its gradiente, the tangential pressure
and the mass can be written as

P
Plp+0p) = Plp) + 0P = Plp) + Z-0p = P(p) + v?op, (9)
Pi(p+dp) = Pi(p) +6PL=Pi(p) + Tpép = P1(p) +vidp, (10)
AP’ "
P'(p+dp) = P'(p) + P = P'(p) + 35 0P = P'(p) + {(vz)’ + v2? p (11)
and p )
m 4mr
mp+8p) ~ m(p) +6m = mlp) + 1 dp = m(p) + = Psp, (12)

Now, we can find the distribution of radial forces that appear on the system due to the density
perturbation by expanding equation (4) to first order,

R%Ro(p,P,PJ_,P/,m)—i-(SR, (13)
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OR OR OR OR OR
R = —56 — 0P+ —0P — 6P + —§ 14
op " TP’ Tap Mt T ap T T g™ (14)

OR R , OR , OR [4777“2;)] 87%{

R = 5p{—+—v +—Ul+8—m 7 By

2y 2P_”}
T 9P, () +v*— }, (15)

p

ml

where the definition p = ;= has been considered. The derivatives of the force distribution, R,
are given by
IR 4mr’P+m IR (p+ P)(1+8mr*P) (16)
op  r(r—2m)’ om (2m —r)? ’
OR m+4mr3(p+2P) 2 OR 2 OR
i = — == d =1. 17
oP r(r—2m) o oP, r o OP (17)

Now, it can be seen that the expression for the distribution of forces dR is independent of the
form of the perturbation of the density dp, and will be different than zero only in the region
where the function of compact support dp is defined. On the other hand, it can be noticed that
other terms appear on the expression for the distribution of forces than the ones that appear on
[8], since we have considered local perturbations which affect the gradient of pressure and the
function of mass. It can also be noticed that for the case of isotropic configurations a change of
sign can occur since there are positive and negative terms.
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Figure 2. On the left density and pressures, on the middle speeds of sound, and on the right
force distribution, R = dR/dp, for the anisotropic Herrera-Model [1]. R does not change its
sign and the model could be considered as potential stable. This picture differs from the one
presented in [1].

4. Detection of instabilities due to cracking
To study the effects of density perturbations on the stability of isotropic matter configurations,
we examine a model proposed by Mehra [9] and considered physically viable by Delgaty and
Lake[10]. Figure 1 displays the force distribution, R = 6R/dp, for the Mehra-model [9] with
two different values of the mass-radius p. It can be noticed that the curve for 4 = 0.2 changes
its sign around r = 0.35, which means that cracking instability can be found for this isotropic
matter configurations.

Now, let us examine an anisotropic sphere that was considered unstable in [1] under
simultaneous density and anisotropic perturbations. As it can be appreciated from Figure 2
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the total distribution force R does not change its sign, thus the model could be considered as
potential stable under the present criterion, the same way as it was stable under the criterion
of [8] given in equation (5). Another anisotropic solution, derived by Gokhroo and Mehra [11],
originally found by Florides[12] and later by Stewart [13], was analysed and found unstable
under the criterion of [8]. It is clear from Figure 3 that with the present refinement of local
density perturbation - and assuming the same set of parameters: p = 0.42, K = 3/56m and
~ = K /4- this solution does not present any cracking instability.
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Figure 3. On the left density and pressures, on the middle speeds of sound and on the right
force distribution, R = dR/dp, for the anisotropic Gokhroo/Mehra-Model [11] with: p = 0.42,
K =3/56m and v = K /4. Observe that it does not present any cracking instability reported in
[8].

5. Remarks and conclusions

We have extended the cracking criterion for anisotropic and isotropic relativistic spheres under
local perturbations of the density and have found that isotropic configurations may present
cracking, in contrast to the results of the previous works. Also solutions that were unstable
under the previous works are found to be stable according to our criterion, this demonstrates
that local perturbations introduce changes in the distribution of forces, since they affect the
gradient of pressure and the mass function.

It is worth to be mentioned that, the concept of cracking is complementary to the Bondi[4] and
Chandrasekhar[5, 6, 7] stability criteria and it refers only to the tendency of the configuration
to split (or to compress) at a particular point within the distribution but not to collapse or
to expand. The cracking, overturning, expansion or collapse, has to be established from the
integration of the full set of Einstein equations. Nevertheless, it should be clear that the
occurrence of these phenomena could drastically alter the subsequent evolution of the system. If
within a particular configuration no cracking (or overturning) is present, we could identify it as
potentially stable, because other types of perturbations could lead to its expansions or collapse.
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