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Abstract. An integrable model describing the interconversion between Bose-Einstein
condensates of atomic and molecular degrees of freedom is studied. An exact solution for this
model has been previously derived via the algebraic Bethe Ansatz formalism. Here we derive
an alternative solution of the Richardson—Gaudin form, and highlight some of the implications
of the result.

1. Introduction

In 2001 Vardi, Yurovsky, and Anglin [1] presented one of the earliest and simplest models for
an atomic-molecular Bose-Einstein condensate. It was subsequently reported in [2] that this
model admits an exact solution via the algebraic Bethe Ansatz, which was used to investigate
ground-state and dynamical properties. A feature of the exact solution is that it is obtained in
the quasi-classical limit. The connection between Yang—Baxter integrability, which underlies the
algebraic Bethe Ansatz approach, and Richardson-Gaudin systems via the quasi-classical limit,
was observed by Sklyanin in 1989 [3]. Strictly speaking Skylanin’s work made connection to
Gaudin’s algebraic approach [4], which itself referenced Richardson’s earlier work [5,6]. It is now
commonplace to refer to a broad class of models as Richardson—-Gaudin systems. Specifically,
we say that a Hamiltonian admits a Bethe Ansatz solution of Richardson—Gaudin form if the
eigenvalues of the Hamiltonian are expressible as a function of the roots of the system of coupled
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where f(v) is a rational function that is model dependent. See [7] for examples. We mention
that the form (1) also accommodates trigonometric solutions through an appropriate variable
change. See [4,8] for a discussion of this point.

A later study established that there exists a more general integrable atomic-molecular Bose—
Einstein condensate model, which contains that of [1] as a limiting case, involving atom-atom,
atom-molecule, and molecule-molecule scattering interactions. This is discussed in [9] and
details the derivation of the algebraic Bethe Ansatz solution, not of the form (1), based on
use of the Yang—Baxter equation. Subsequently there have been several studies of the extended
model described in [9] including the calculation of quantum dynamics [10], molecular conversion
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efficiency [11], quantum phase transitions [12,13], and the effects of particle losses [14]. However
it seems that no studies have been made which exploit the existence of an exact solution. The
objective of the present work is to aid progress in this direction by deriving an exact solution of
the extended model of [9] which retains the Richardson-Gaudin form of exact solution (1). The
motivation for achieving this is that it opens up an avenue to make exact quantitative calculations
following the methods described in [15], which were guided by the qualitative observations of [16].

The approach used to derive this exact solution in the Richardson—-Gaudin form does not
rely on a solution of the Yang-Baxter equation [3], nor the use of Gaudin’s algebra [4]. We
instead exploit a correspondence between Richardson—Gaudin systems and ordinary differential
equations. This correspondence has received significant attention as a tool for numerically
solving the Bethe Ansatz equations associated with Richardson-Gaudin systems [2,17-23]. Here
we invert this correspondence to derive the Bethe Ansatz equations for the Hamiltonian under
consideration. The method, which provides a simple and direct derivation, is based on the
following observation. A polynomial

M
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where the roots v, are distinct, satisfies the equations
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where the prime denotes differentiation. Eq. (2) has the same generic form as Eq. (1).

2. The Hamiltonian
The model for condensed, interacting, atomic and molecular bosons is given by the Hamiltonian
[9-14]

H = UyoN? + Up N2 + UayNaNy + 1N + 1 Nj + Q2 (aTaTb + bTaa) (3)

where a, a' are the annihilation and creation operators for an atomic mode, and b, b' are the
annihilation and creation operators for a diatomic, homonuclear molecular mode. These satisfy
the canonical commutation relations

[a, aT} - [b, bT} -y

where I denotes the identity operator. Moreover

0, 8] = [ 1] = [ot.6] = [ ] =o.

The parameters p; are chemical potentials for species ¢ and 2 is the amplitude for the
interconversion of atoms and molecules. The parameters U; are scattering couplings, taking
into account atom-atom (Ugg), atom-molecule (Uy,p), and molecule-molecule (Uy,) interactions.
The Hamiltonian commutes with the total atom number N = N, + 2N, where N, = afa and
Ny = bfb. The limiting case Uyq = Uy, = Uy, = 0 is the model introduced in [1].

The Bethe Ansatz solution as derived in [9] provides energy eigenvalues given by
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where the parameters {u;} satisfy the Bethe Ansatz equations

M
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The parameters above are related to the coupling parameters of the Hamiltonian through

. 4Uaa + Ubb - 2Uab

2Q ’
o= Upp — 4U4q
2Q ’
8= 2pp — 4ppa + 4Uoq — Uap
B 49 ’
o Uaa — 2pq
=0
5 2t — Uab’
2
v = Ubp.

The allowed values for x are k = 1/4, 3/4, through which the total particle number is given by
N =2M + 2k —1/2.

Setting Uyq = Uy = Uy = 0 imposes = 0, with which (4) becomes an identity. Furthermore
setting pp = 0 and expanding (4) in 7 yields the Bethe Ansatz solution in the quasi-classical
limit:

M
E=2pa(M+ K —1/4) =20 " u;, (5)
=1

where the parameters {u;} satisfy the Bethe Ansatz equations
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The above solution has the Richardson-Gaudin form (1). Taking into account different
conventions used, this is equivalent to the solution provided in [2].

3. The Bethe Ansatz solution of the full Hamiltonian in Richardson—Gaudin form
Our objective now is to provide an alternative derivation of Bethe Ansatz solution for (3) which
has the Richardson—Gaudin form (1). Let |vac) denote the vacuum state. Since N is conserved,
for each subspace of fixed N we have the basis states

= (o) (1) fvae) (7

for j =0,....M, M = (N —k)/2 where k = 1 for odd N and k = 0 for even N. This implies the
identity
k(k—1)=0 < Kk =k

which will be assumed below. Let

U= UaaN3 + UabNaNb + Ubb]\]b2 + HaNa + HbNb-
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C = k*Upq + kMU, + M?Upy + kpia + My,
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It is now seen that the action of (3) on the basis elements (7) is equivalent to the action of
the differential operator

2
H = (A2 + 4Q2) % + (Bx + Q(4k + 2 — 2%)) di +(C +QMz)
T T

on the basis of monomials through the identification 2/ = |j). Consider
HQ(z) = EQ(x),
or equivalently
(Az? +4Q2) Q" (z) + (Bz + Q4k + 2 — 2%)) Q' () + (C + QMz) Q(z) = EQ(z),  (8)

where

Then
Bvj + Q(4k + 2 — vjz) Q" (vj)
AUJZ + 4Qv; Q' (vj)
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Finally, by equating the Mth-order terms in (8), with
M
Qz) ~ ™ — M1y "0y,
j=1

we obtain

M
E=AM(M -1)+BM+C—-Q> v;. (10)
j=1

Egs. (9,10) provide the Bethe Ansatz solution of (3) in Richardson-Gaudin form. It can be
verified that setting U,y = Uy = Uy, = pp = 0 leads to (9) and (10) reducing to (6) and (5)
respectively, with the change of variables v; = 2u; and k = 2k — 1/2.

An alternative formulation is to instead adopt the basis states

1y =(a)" " (1) vac) (11)

forl=0,..,.M, M = (N —k)/2, and again k = 1 for odd N and k = 0 for even N. We set

A=4Uy, — 2Uqp + U,
B = 4(N - 1)Uaa - (N - 2)Uab - Ubb + 2,Ua — Mb,
C = N?Uuq + N ia.
Now it can be shown that the action of (3) on the basis elements (11) is equivalent to the action
of the differential operator
A 2 5y @ 5 2\ 4 ~
H = (A® +400%) 5 + (=Br+ Q01+ (6 - 4N)a?)) —+ (C+onw-1z) (12

on the basis of monomials through z! = |I). Consider

HQ(z) = EQ(x)
where
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Then by the same considerations as above we find
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Set w; = U;l. Through standard algebraic manipulations it can be shown that (9) and (13)
are equivalent by noting that

B=B—-A(N —k-2),
C=AM(M —1)—BM +C.

Using (13) we may write

M
- 2
-1 _ } 2
k#j
from which it follows that
. M M
—BM + Q) v — (4k+2)Q) wj = —AM(M —1).
j=1 j=1

This leads to the conclusion that (10) and (14) are equivalent.

Egs. (9) and (10), or equivalently Egs. (13) and (14), provide the Bethe Ansatz solution
of the Hamiltonian (3) in Richardson-Gaudin form. As mentioned earlier, the motivation for
obtaining this form is that it opens up an avenue to make exact quantitative calculations for
the ground-state energy and particular expectation values. This can be achieved following the
methods described in [15] used for similar models. We look forward to reporting on developments
in this direction in future work.
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