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Abstract. An innovative symmetry-guided approach and its applications to light and
intermediate-mass nuclei is discussed. This approach, with Sp(3,R) the underpinning group, is
based on our recent remarkable finding, namely, we have identified the symplectic Sp(3,R) as
an approximate symmetry for low-energy nuclear dynamics. This study presents the results of
two complementary studies, one that utilizes realistic nucleon-nucleon interactions and unveils
symmetries inherent to nuclear dynamics from first principles (or ab initio), and another study,
which selects important components of the nuclear interaction to explain the primary physics
responsible for emergent phenomena, such as enhanced collectivity and alpha clusters. In
particular, within this symmetry-guided framework, ab initio applications of the theory to light
nuclei reveal the emergence of a simple orderly pattern from first principles. This provides
a strategy for determining the nature of bound states of nuclei in terms of a relatively small
fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large
model spaces for a description of alpha-cluster and highly deformed structures together with
associated rotations. We find that by using only a fraction of the model space extended
far beyond current no-core shell-model limits and a long-range interaction that respects the
symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states
in 12C (including the elusive Hoyle state of importance to astrophysics) and agrees with ab
initio results in smaller spaces. For these states, we offer a novel perspective emerging out
of no-core shell-model considerations, including a discussion of associated nuclear deformation,
matter radii, and density distribution. The framework we find is also extensible beyond 12C,
namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg,
and Si isotopes.

1. Introduction
Approximate symmetries in atomic nuclei that favor large deformation along with monopole and
quadrupole excitations thereof, associated with the SU(3) group and the symplectic Sp(3,R)
group, have been long recognized in selected cases [1–10]. But only recently, we have confirmed
the existence of these symmetries, within the ab initio (or “from first principles”) symmetry-
adapted no-core shell model (SA-NCSM) framework [11]. This study unveiled the orderly
patterns associated with such symmetries in nuclear wavefunctions from first principles, without
a priori symmetry constraints. This suggests a novel theoretical framework for nuclear structure
modeling that, in addition to the exact conventional symmetries, such as parity and rotational
invariance, can take advantage of these approximate symmetries. The latter are utilized and
further understood in the framework of the microscopic no-core symplectic model (NCSpM) [12],
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which combines a long-range many-nucleon interaction that respects the symmetries in play
together with a symmetry-mixing spin-orbit term. The findings of the present study point to a
new insight, namely, understanding the mechanism and the primary physics responsible for the
emergence of simple structures in complex nuclei from a no-core shell-model perspective.

One of the most successful particle-driven models is the ab initio no-core shell model (NCSM)
[13], which can accommodate any type of inter-nucleon interactions, including modern two- and
three-nucleon realistic interactions. Specifically, for a general problem, the NCSM adopts the
intrinsic non-relativistic nuclear plus Coulomb interaction Hamiltonian defined as follows:

H = Trel + VNN + VNNN + . . .+ VCoulomb, (1)

where the VNN nucleon-nucleon interaction is included along with the VCoulomb Coulomb
interaction between the protons. The Hamiltonian may include a VNNN 3-nucleon interaction
and additional terms such as multi-nucleon interactions among more than three nucleons
simultaneously and higher-order electromagnetic interactions such as magnetic dipole-dipole
terms. It adopts the harmonic oscillator (HO) single-particle basis characterized by the �Ω

oscillator strength (or equivalently, the oscillator length b =
√

�

mΩ for a nucleon mass m) and

retains many-body basis states of a fixed parity, consistent with the Pauli principle, and limited
by a cutoff Nmax. The Nmax cutoff is defined as the maximum number of HO quanta allowed
in a many-body basis state above the minimum for a given nucleus. It divides the space in
“horizontal” HO shells and is dictated by particle-hole excitations (this is complementary to
the NCSpM, which divides the space in vertical slices selected by collectivity-driven rules). It
seeks to obtain the lowest few eigenvalues and eigenfunctions of the Hamiltonian (1). The
NCSM has achieved remarkable descriptions of low-lying states from the lightest nuclei up
through 12C, 16O, and 14F [13, 14], and is further augmented by several techniques, such as
NCSM/RGM [15], Importance Truncation NCSM [16] and Monte Carlo NCSM [17]. This
supports and complements results of other first-principle approaches, such as Green’s function
Monte Carlo (GFMC) [18], Coupled-cluster (CC) method [19], In-Medium SRG [20], and Lattice
Effective Field Theory (EFT) [21].

However, the established NCSM methods are not able to reach the physics regime necessary
for a description of largely deformed nuclear states, such as the 12C Hoyle state that was
predicted based on observed abundances of heavy elements in the universe [22], and which has
attracted much recent attention both in theory (e.g., see [21,23,24]) and experiment ( [25–32]).
In this study, we address this problem, within a no-core shell-model framework, by utilizing
a small subset of symplectic Sp(3,R) basis states [6, 7] (with the complete set yielding results
equivalent to those of the NCSM), an Sp(3,R)-preserving part of the long-range inter-nucleon
interaction [12], and an important symmetry-breaking spin-orbit term.

2. Discovery of a highly structured pattern within the first-principle SA-NCSM
framework
The ab initio symmetry-adapted no-core shell model (SA-NCSM) [11] combines the first-principle
concept of the NCSM with symmetry-guided considerations. For the first time, we show the
emergence – in the framework of the SA-NCSM from first principles – of orderly patterns that
favor large deformation/low spin in nuclear wavefunctions [11]. These patterns are linked to the
SU(3) group and the symplectic Sp(3,R) group, where Sp(3,R)⊃SU(3). SU(3) describes the
3-dimensional harmonic oscillator and its irreducible representations (irreps) are specified by
(λω μω) quantum numbers that can be related to the intrinsic quadrupole deformation [33–35]
– e.g., (0 0), (λω 0), and (0μω) describe spherical, prolate, and oblate shapes, respectively. The
Sp(3,R) group is described in detail in Section 3.

In particular, the ab initio Nmax = 8 SA-NCSM results with the bare N3LO [36] (similarly,
for JISP16 [37]) realistic interaction for the 8Be 0+ ground state (gs) and its rotational band
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Figure 1. Probability distribution across Pauli-allowed intrinsic spin and deformation
configurations for the ab initio SA-NCSM 0+ gs of 8Be for Nmax = 8 and �Ω = 25 MeV
with the N3LO interaction. The concentration of strengths to the far right demonstrates the
dominance of collectivity in the calculated eigenstates. This novel feature enables the SA-NCSM
– by using symmetry-dictated subspaces – to reach new domains currently inaccessible by ab
initio calculations, such as isotopes of Ne, Mg, and Si.

reveal the dominance of the 0�Ω component with the foremost contribution coming from the
leading (λω μω) = (4 0) SU(3) irrep (Fig. 1). Furthermore, we find that important SU(3)
configurations are then organized into structures according to the Sp(3,R) symplectic group,
that is, the (λσ μσ) = (4 0) S = 0 symplectic irrep contains the (λω μω) = (4 0) configuration in
the 0�Ω subspace, (λω μω) = (6 0), (4 1), and (2 2) configurations in the 2�Ω subspace, and so
on. Those configurations, all part of a single symplectic irrep, the S = 0 (4 0), indeed realize
the major components of the wavefunction in the respective subspaces. Similar results are
observed for other p-shell nuclei, such as 6Li, 6He, and 12C. This further reveals the significance
of the symplectic symmetry to nuclear dynamics. Moreover, the outcome supports a symmetry-
guided concept [11], based on the dominance of only a few configurations, as evident by the
concentration of probability to the far right in Fig. 1. That the relevant model space can
be systematically selected, using a quantified cutoff, starting from the largest deformation
and associated symplectic excitations thereof, and including ever smaller deformation until
convergence of results is achieved, is a key feature of the SA-NCSM.

3. Symplectic Sp(3,R) group
The significance of the symplectic Sp(3,R) group for a microscopic description of a quantum
many-body system of interacting particles has been recognized by Rowe and Rosensteel [6, 7].
Indeed, the 21 symplectic generators are directly related to the particle momentum (psα) and
coordinate (rsα) operators, with α = x, y, and z for the 3 spatial directions and s labeling an
individual nucleon, and realize important observables. Namely, Sp(3,R)-preserving operators
include: the many-particle kinetic energy

∑
s,α p

2
sα/2m, the HO potential,

∑
s,αmΩ2r2sα/2,

the mass quadrupole moment Q(2M) =
∑

s q(2M)s =
∑

s

√
16π/5r2sY(2M)(r̂s), and angular

momentum L operators, together with multi-shell collective vibrations and vorticity degrees
of freedom for a description from irrotational to rigid rotor flows. Indeed, an important
Sp(3,R)-preserving interaction is 1

2Q · Q = 1
2

∑
s qs · (∑t qt), as this realizes the physically

relevant interaction of each particle with the total quadrupole moment of the nuclear system.
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The symplectic Sp(3,R) symmetry underpins the symplectic shell model, which provides a
microscopic formulation of the Bohr-Mottelson collective model [1] and is a multiple oscillator
shell generalization of the successful Elliott SU(3) model [2]. The symplectic model with
Sp(3,R)-preserving interactions has achieved a remarkable reproduction of rotational bands and
transition rates without the need for introducing effective charges, while only a single Sp(3,R)
configuration is used [7, 9]. A shell-model study in a symplectic basis that allows for mixing
of Sp(3,R) configurations due to pairing and non-degenerate single-particle energies above a
16O core [8] has found that using only seven Sp(3,R) configurations is sufficient to achieve a
remarkable reproduction of the 20Ne energy spectrum as well as of E2 transition rates without
effective charges.

3.1. The sp(3,R) algebra and generators
As described in [38], the translationally invariant (intrinsic) symplectic generators can be written

as SU(3) tensor operators in terms of the HO raising, b
†(1 0)
iα = 1√

2
(Xiα − iPiα), and lowering

b
(0 1)
iα dimensionless operators (with X and P the lab-frame position and momentum coordinates
and α = 1, 2, 3 for the three spatial directions) [7],

A
(2 0)
LM =

1√
2

A∑
i=1

[
b†i × b†i

](2 0)
LM

− 1√
2A

A∑
s,t=1

[
b†s × b†t

](2 0)
LM

(2)

C
(1 1)
LM =

√
2

A∑
i=1

[
b†i × bi

](1 1)
LM

−
√
2

A

A∑
s,t=1

[
b†s × bt

](1 1)
LM

, (3)

together with B
(0 2)
LM = (−)L−M (A

(2 0)
L−M )† (L = 0, 2) and H

(00)
00 =

√
3
∑

i

[
b†i × bi

](00)
00

−
√
3

A

∑
s,t

[
b†s × bt

](0 0)
00

+ 3
2(A − 1), where the sums run over all A particles of the system. The

eight generators C
(1 1)
L,M (L = 1, 2) close the su(3) subalgebra of sp(3,R). They realize the angular

momentum operator:

L1M = C
(1 1)
1M , M = 0,±1, (4)

and the Elliott algebraic quadrupole moment tensor Qa
2M =

√
3C

(1 1)
2M , M = 0,±1,±2. The mass

quadrupole moment can be constructed in terms of the symplectic generators as,

Q2M =
√
3(A

(2 0)
2M + C

(1 1)
2M +B

(0 2)
2M ). (5)

Equivalently, the symplectic generators, being one-body-plus-two-body operators can be

expressed in terms of the creation operators a†(η 0) = a†η, which create a nucleon in the HO

shell η = 0, 1, 2, . . ., together with its SU(3)-conjugate annihilation operator, ã(0 η). This
is achieved by using the known matrix elements of the position (Xi) and momentum (Pi)

operators in a HO basis, and hence, e.g., the first sum of A
(2 0)
LM in Eq. (2) becomes,∑

η

√
(η+1)(η+2)(η+3)(η+4)

12

[
a†(η+20) × ã(0 η)

](2 0)
LM

[39]. Note that this operator describes excitations

of a nucleon from the η shell to the η+2 shell, which corresponds to creating two single-particle
HO excitation quanta, as manifested in the first term of Eq. (2).

Finally, the translationally invariant generators can be realized in terms of intrinsic
coordinates, that is, particle position (ri) and momentum (pi) coordinates relative to

the CM (
∑

i ri = 0 and
∑

i pi = 0), and, e.g., Eq. (2) becomes, A
(2 0)
LM =

1√
2

∑
i

[
(b†i − 1

A

∑
s b

†
s)× (b†i − 1

A

∑
t b

†
t)
](2 0)
LM

≡ 1√
2

∑A
i=1

[
b†i × b†i

](2 0)
LM

, with the dimensionless

intrinsic operators, b
†(1 0)
iα = 1√

2
(riα − ipiα).
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3.2. Irreducible representations and many-body basis states
A many-body basis state of a symplectic irrep (detailed in [7]) is labeled according to the group
chain,

Sp(3,R) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
σ nρ ω κ L M

(6)

and constructed by acting with symmetrically coupled polynomials in the symplectic raising
operators, A(2 0), on a unique symplectic bandhead configuration, |σ〉,

|σnρωκLM〉 =
[[
A(2 0) ×A(2 0) . . .×A(2 0)

]n × |σ〉
]ρω
κLM

, (7)

where σ ≡ Nσ (λσ μσ) labels the Sp(3,R) irrep, n ≡ Nn (λn μn), ω ≡ Nω (λω μω), and
Nω = Nσ +Nn is the total number of HO quanta (ρ and κ are multiplicity labels). This can be
generalized to include spin, |σnρωκ(LSσ)JMJ〉 =

∑
MMS

〈LM ;SσMS | JMJ〉|σnρωκLMSσMS〉,
and also isospin. States within a symplectic irrep have the same spin (isospin) value, which
is given by the spin Sσ (isospin Tσ) of the bandhead |σ;Sσ(Tσ)〉 [40]. Symplectic basis states
span the entire shell-mode space. A complete set of labels includes additional quantum numbers
|{α}σ〉 that distinguish different bandheads with the same Nσ (λσ μσ). Sp(3,R)-preserving
Hamiltonians render energy spectra degenerate with respect to {α}. However, for all present
calculations for gs rotational bands and associated observables, {α} is unique (an only set).

The symplectic structure accommodates relevant particle-hole (p-h) configurations in a
natural way (see also Fig. 1 of Ref. [12]). According to Eq. (7), the basis states of an
Sp(3,R) irrep are built over a bandhead |σ〉 by 2�Ω 1p-1h (one particle raised by two shells)

monopole (L = 0) or quadrupole (L = 2) excitations, realized by the first term in A
(2 0)
LM of Eq.

(2), together with a smaller 2�Ω 2p-2h correction for eliminating the spurious center-of-mass

motion, realized by the second term in A
(2 0)
LM . The symplectic bandhead |σ〉 is the lowest-weight

Sp(3,R) state, which is defined by the usual requirement that the symplectic lowering operators
annihilate it. The bandhead, |σ;κσLσMσ〉, is an SU(3)-coupled many-body state with a given
nucleon distribution over the HO shells and while not utilized here, can be obtained in terms

of the above-mentioned creation operators a†(η 0) = a†η. E.g., for a 0�Ω bandhead, the nucleon

distribution is a single configuration,

[
a†(η1 0) × a†(η2 0) × . . .× a†(ηA 0)

](λσ μσ)

κσLσMσ

|0〉 (8)

with Nσ = η1+η2+ . . .+ηA+ 3
2(A−1), such that Nσ�Ω includes the HO zero-point energy. Note

that 3/2 is subtracted from Nσ to ensure a proper treatment of the CM – in addition to this,
the NCSpM uses translationally invariant symplectic generators that can be expressed in ri and
pi relative to the CM; these symplectic generators are used to build the basis, the interaction,
the many-particle kinetic energy operator, as well as to evaluate observables.

An example for the basis states within a symplectic irrep follows for 24Mg. Its lowest HO-
energy configuration is given by Nσ = 62.5 or 0�Ω (no HO excitation quanta), while the
4�Ω (20 0) symplectic irrep includes:

(i) A bandhead (Nn = 0) with Nσ = 66.5 (or 4�Ω) and (λσ μσ) = (20 0);

(ii) Nn = 2 states with Nω=68.5 and (λω μω) = (22 0), (20 1), and (18 2);

(iii) and so forth for higher Nn.

For each (λω μω), the quantum numbers κ, L and M are given by Elliott [2, 4]. E.g., for (22 0),
κ = 0, L = 0, 2, 4, . . . , 22, and M = −L,−L+ 1, . . . , L.
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3.3. Reduced matrix elements of the symplectic generators
The SU(3)-reduced matrix elements of the Sp(3,R) generators are analytically known [7,41–44].

The steps to compute 〈σnfρfωf‖A(2 0)‖σniρiωi〉, similarly for B
(0 2)
LM = (−)L−M (A

(2 0)
L−M )†, are

outlined in what follows:

(i) Calculations of non-normalized matrix elements (nf‖A(2 0)‖ni) (with A(2 0) → A(2 0) in
the contraction u(3) [Weyl] limit) using Eq. (4.51) of Ref. [7] (see also, [41]) with

n1 =
Nn+2λn+μn

3 , n2 =
Nn−λn+μn

3 , and n3 =
Nn−λn−2μn

3 associated with ni = Nn,i (λn,i μn,i)

and nf (note that Ref. [7] uses ‘a†’ instead of ‘A(2 0)’, not to be confused with the creation
fermion operator referenced above);

(ii) Calculations of non-normalized (σnfρfωf‖A(2 0)‖σniρiωi) from (nf‖A(2 0)‖ni) using Eq.
(4.50) of Ref. [7];

(iii) Calculations of 〈σnfρfωf‖A(2 0)‖σniρiωi〉 from the non-normalized reduced matrix elements
(step 2) using the K-matrix approach [42, 43]. The present calculations utilize the full K
matrix (exact calculations). However, in the multiplicity-free case (ρmax

i = ρmax
f = 1) or in

the limit of large σ [45], the normalization matrix reduces to normalization coefficients (a
diagonal K matrix) given by Eq. (17) of Ref. [45].

For the C
(1 1)
LM SU(3)-reduced matrix elements, see, e.g., Eq. (19) of Ref. [44]. Using the

reduced matrix elements of the Sp(3,R) generators and the relation (5), the analytical formula
for the Q ·Q matrix elements has been derived in Ref. [44].

For example, Sp(3,R)-preserving Hamiltonians can include the many-particle kinetic energy:

T

�Ω
=

1

�Ω

∑
i

p2
i

2m
=

1

2
H

(00)
00 −

√
3

8
(A

(2 0)
00 +B

(0 2)
00 ), (9)

the HO potential:

VHO

�Ω
=

1

�Ω

∑
i

mΩ2r2i
2

=
1

2
H

(00)
00 +

√
3

8
(A

(2 0)
00 +B

(0 2)
00 ), (10)

as well as terms dependent on L, see Eq. (4), and Q, see Eq. (5). These interactions
have analytical matrix elements in the symplectic basis (7) and act within a symplectic irrep
(σf = σi ≡ σ). For example, for the dimensionless many-particle kinetic energy, T

�Ω , the matrix
elements are given as:

〈
σnfρfωfκfLfMf | T

�Ω
|σniρiωiκiLiMi

〉
=

1

2

〈
σnfρfωfκfLfMf |H(00)

00 |σniρiωiκiLiMi

〉

−
√

3

8

〈
σnfρfωfκfLfMf |A(2 0)

00 +B
(0 2)
00 |σniρiωiκiLiMi

〉
= (11)

1

2
Nωδf,i −

√
3

8

(
〈ωiκiLiMi; (2 0)00|ωfκfLfMf 〉〈σnfρfωf‖A(2 0)‖σniρiωi〉+ conjugate

)
,

where 〈ωiκiLiMi; (2 0)00|ωfκfLfMf 〉 is the SU(3) Clebsch-Gordan coefficient and the reduced
matrix elements of the symplectic generators are calculated according to the steps outlined
above.
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4. Utilizing approximate symmetries in nuclear modeling
We employ the no-core symplectic model (NCSpM), outlined in Ref. [9], with a novel interaction
that is effectively realized by an exponential dependence on the quadrupole-quadrupole (Q.Q)
two-body interaction [12,38]. This introduces simple but important many-body interactions that
enter in a prescribed hierarchical way given in powers of a small parameter, the only adjustable
parameter in the model. The model offers a microscopic no-core shell-model description of
nuclei in terms of mixed deformed configurations and allows the inclusion of higher-energy
particle excitations [12] that are currently inaccessible by ab initio shell models. It reduces to
the successful Elliott model [2,4] in the limit of a single valence shell and a zero model parameter.

The underlying groups of the NCSpM are the symplectic Sp(3,R) group [6, 7] and its SU(3)
subgroup [2, 4]. The symplectic basis, described above and utilized in NCSpM, is related, via
a unitary transformation (see the review [40]), to the three-dimensional HO (m-scheme) many-
body basis used in the NCSM [13]. Indeed, the NCSpM employed within a complete model space
up through Nmax, will coincide with the NCSM for the same Nmax cutoff. Important features
of the NCSpM model are (1) the Sp(3,R) irreps divide the space into ‘vertical cones’ that are
comprised of basis states of good (λμ) quantum numbers, and (2) its ability to down-select to
the most relevant configurations, which are chosen among all possible Sp(3,R) irreps within an
Nmax model space.

4.1. Schematic many-nucleon interaction
As discussed in Ref. [12], we employ a microscopic many-body interaction, which allows for
large Nmax no-core shell-model applications. This interaction utilizes two central components:
a single-particle piece, consisting of the harmonic oscillator potential and a spin-orbit term,
together with a collective piece, which enters through the use of the quadrupole-quadrupole
interaction. Specifically, we utilize an elementary form tied to a long-range expansion of the
nucleon-nucleon central force V (|ri−rj |) [46], simplified by considering the most relevant degrees
of freedom necessary to describe deformed spatial configurations,

Hγ =

A∑
i=1

(
p2
i

2m
+

mΩ2r2i
2

− κli · si
)

+
χ

2

(e−γ(Q·Q−〈Q·Q〉Nn ) − 1)

γ
, (12)

where �Ω, κ, and χ are parameters, for which we use empirical estimates, while γ ≥ 0 is the
only adjustable parameter in the model (as discussed below). Hγ is given in terms of particle
momentum and position coordinates relative to the center of mass. The average contribution
〈Q · Q〉Nn of Q · Q for given Nn HO excitations [47] introduces a considerable renormalization
of the HO shell structure and hence, is removed in multi-shell studies [35].

We use χ = �Ω/(4
√
Nω(f)Nω(i)) for a 〈f |Hγ |i〉 matrix element for final (f) and initial

(i) many-body states. The decrease of χ with Nω, to leading order in λ/Nω, has been
shown by Rowe [48] based on self-consistent arguments. We also use the empirical estimates
�Ω ≈ 41/A1/3 = 18 MeV and κ ≈ 20/A2/3 = 3.8 MeV (e.g., see [1]). The only adjustable
parameter of the NCSpM model is γ, which controls the presence of the many-body interactions
and thus cannot be informed by existing two-body and three-body interactions. The effective
interaction (12) introduces hierarchical many-body interactions in a prescribed way, e.g.,

χ

2γ

(
e−γQ·Q − 1

)
= −1

2
[χ(

∞∑
k=0

(−γ)k(Q ·Q)k

(k + 1)!
)]Q ·Q, (13)

such that they become quickly negligible for a reasonably small γ � 1. E.g., we find that for
12C, besides Q · Q, only one term is sufficient for the ground-state band (k = 1), while three
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Figure 2. Probability distribution for 12C as a function of the Nn total excitations of (a) the
lowest 0+ state and (b) the lowest 4+ state as calculated by the NCSpM with Hγ (left set of
bars within each Nn value) and the ab initio SA-NCSM with the bare JISP16 NN interaction
(right set of bars within each Nn value). Both models are limited to an Nmax = 6 model space
for comparison. The dominant shape deformations, specified by (λμ), are shown. Very similar
results are obtained for the lowest 2+ state.

terms (k = 3) are sufficient for the Hoyle-state band [12]. This ties directly to the interaction
used in Ref. [49], which is given as a polynomial in Q, namely, Q ·Q, (Q×Q) ·Q, and (Q ·Q)2,
and applied to the 24Mg gs rotational band.

4.2. Comparison to ab initio no-core shell model
A comparison of the present NCSpM results for 12C to ab initio outcomes is possible in smaller
model spaces, for example, for the gs rotational band in Nmax = 6. This space appears to
be reasonable for these states for both models. In particular, we compare to wavefunctions
obtained in the SA-NCSM [50] with the bare JISP16 realistic interaction [37]. Consistent with
the outcome of Refs. [50] and [11] (see, e.g., Fig. 1 in Ref. [11] for 6Li and 8Be wavefunctions
in Nmax = 8 − 10, as well as Fig. 1 above), the ab initio Nmax = 6 SA-NCSM results for the
0+ gs, first 2+ and first 4+ states of 12C reveal the dominance of the 0�Ω component with the
foremost contribution coming from the leading (0 4) S = 0 irrep (see Fig. 2 for the gs and the
4+1 state). Furthermore, we find that important SU(3) configurations are then organized into
structures according to the Sp(3,R) symplectic group, that is, the (0 4) symplectic irrep gives
rise to dominant (0 2) and (2 4) configurations in the 2�Ω subspace and so on (see Fig. 2),
similarly to the discussion above for the 8Be ground state. The next important configuration
is spin-1 (1 2) at 0�Ω with the associated symplectic excitations (Fig. 2). Therefore, among
all possible configurations present in the SA-NCSM, only the states of the (0 4) and then (1 2)
symplectic irreps appear dominant.

In addition, we find a close similarity to ab initio results for the NCSpM wavefunctions of
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the gs rotational band, calculated with Hγ (12) for γ = 0.74 × 10−4 and symplectic irreps
with bandheads (0 4) and (1 2) (Fig. 2). NCSpM and SA-NCSM calculations are performed for
�Ω = 18 and Nmax = 6 model spaces. The close agreement of the probability distribution across
the Nn�Ω subspaces and of the SU(3) content of the wavefunctions for the two models indicates
that the two 0�Ω bandheads of the NCSpM model space account for the part of the complete
Nmax = 6 model space that is most relevant to the physics of the 12C gs rotational band. If the
SA-NCSM model space is reduced to only the spin components used in this study, SpSnS = 000,
011, and 101, NCSpM observables such as gsmatter rms radius and Q2+1

reproduce their ab initio

counterparts as much as 80-90% and 70-90%, respectively, for the same �Ω and Nmax = 2, 4 and
6. This suggests that the interaction used in NCSpM has effectively captured a major portion of
the underlying physics of the realistic interaction important to the low-lying nuclear states [12].

4.3. Clustering and collectivity in 12C
The NCSpM outcome reveals a quite remarkable agreement with the experiment (Fig. 3a).
The results are shown for Nmax = 20, which we found sufficient to yield convergence. This
Nmax model space is further reduced by selecting the most relevant symplectic irreps, namely,
five symplectic bandheads and all symplectic multiples thereof up through Nmax = 20 of total
dimensionality of 6.6 × 103. The four bandheads are the spin-zero (S = 0) 0�Ω 0p-0h (0 4),
2�Ω 2p-2h (6 2), and 4�Ω 4p-4h (12 0) symplectic bandheads together with the S = 1 0�Ω
0p-0h (1 2). In comparison to experiment, the outcome (Fig. 3a, dark colors) reveals that the
lowest 0+, 2+, and 4+ states of the 0p-0h symplectic irreps (Fig. 3a, blue) calculated with
γ = −1.71× 10−4 closely reproduce the gs rotational band, indicating clear oblate shapes (Fig.
3b, top). In addition, the calculated lowest states of the 4�Ω 4p-4h (12 0) irrep (Fig. 3a, red)
are found to lie close to the Hoyle-state rotational band, revealing alpha-clustering and prolate
shapes (Fig. 3b, bottom). Furthermore, the lowest 0+ of the 2�Ω 2p-2h (6 2) irrep (Fig. 3a,
green) is found to lie around the 10-MeV 0+ resonance (third 0+ state).

(a) (b)

Figure 3. (a) Energy spectrum for 12C calculated using NCSpM in the Nmax = 20 model space
of Sp(3,R) irreps with Nσ = 24.5 (blue, left), Nσ = 26.5 (green, middle), and Nσ = 28.5 (red,
right), and (λσ μσ) = (0 4), (6 2), and (12 0) (light colors) and with the addition of the (1 2)
Sp(3,R) irrep (dark colors). Experimental data is from [51], except the latest results for 0+3 [28]
and the states above the Hoyle state, 2+ [31] and 4+ [52]. B(E2) transition rates are in W.u.
with theoretical uncertainties estimated for a ±60% deviation of the Hoyle state energy. (b)
NCSpM matter-density profile (with respect to the intrinsic frame) of the 12C ground state (top)
and the Hoyle state (bottom) showing the formation of three clusters in the Hoyle state within
a no-core shell-model framework.
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As compared to the model space consisting of the spin-0 irreps only (Fig. 3a, light colors),
the addition of only one spin-1 irrep yields a NCSpM energy spectrum that is further improved
and found to lie reasonably close to the experimental data. The Sp(3,R)-nonpreserving spin-
orbit term mixes the spin-0 (0 4) and spin-1 (1 2) irreps for all Jπ = 0+, 2+1 , and 4+1 , which
results in a more realistic energy spacing between the excited states. Specifically, we see the gs
separating from the higher-lying 0+ states, and a slight stretching in the gs rotational band. This
is similar to the findings of early cluster models, which remedy this by allowing for alpha-cluster
dissociation due to a spin-orbit force as discussed in [24].

The outcome of the present analysis is not limited to 12C. The model we find is also applicable
to the low-lying states of other p-shell nuclei, such as 8Be, as well as sd-shell nuclei without any
adjustable parameters [38, 53]. In particular, using the same γ = −1.71 × 10−4 as determined
for 12C, we describe selected low-lying states in 8Be in an Nmax = 24 model space with only
3 spin-zero 0�Ω (4 0), 2�Ω (6 0), and 4�Ω (8 0) symplectic irreps [53]. Furthermore, we have
successfully applied the NCSpM without any adjustable parameters to the gs rotational band
of heavier nuclei, such as 20O, 20,22,24Ne, 20,22Mg, and 24Si [38]. This suggests that the fully
microscopic NCSpMmodel has indeed captured an important part of the physics that governs the
low-energy nuclear dynamics and informs key features of the interaction and nuclear structure
primarily responsible for the formation of such simple patterns.

In short, by utilizing approximate symmetries that are found to underpin nuclear dynamics,
we offer a novel framework, based on the no-core shell model, to further understand highly
deformed states, exemplified by the Hoyle state and its rotational band.
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[16] Roth R and Navrátil P 2007 Phys. Rev. Lett. 99 092501
[17] Abe T, Maris P, Otsuka T, Shimizu N, Utsuno Y and Vary J 2012 Phys. Rev. C 86 054301
[18] Pieper S C, Varga K and Wiringa R B 2002 Phys. Rev. C 66 044310
[19] Wloch M, Dean D J, Gour J R, Hjorth-Jensen M, Kowalski K, Papenbrock T and Piecuch P 2005 Phys. Rev.

Lett. 94 212501

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012054 doi:10.1088/1742-6596/597/1/012054

10



[20] Tsukiyama K, Bogner S K and Schwenk A 2011 Phys. Rev. Lett. 106 222502
[21] Epelbaum E, Krebs H, Lee D and Meissner U G 2011 Phys. Rev. Lett. 106 192501
[22] Hoyle F 1954 Astrophys. J. Suppl. Ser. 1 121
[23] Chernykh M, Feldmeier H, Neff T, von Neumann-Cosel P and Richter A 2007 Phys. Rev. Lett. 98 032501
[24] Khoa D T, Cuonga D C and Kanada-En’yo Y 2011 Phys. Letts. B 695 469
[25] Fynbo H O U et al. 2005 Nature 433 136
[26] Freer M et al. 2009 Phys. Rev. C 80 041303
[27] Hyldegaard S et al. 2010 Phys. Rev. C 81 024303
[28] Itoh M et al. 2011 Phys. Rev. C 84 054308
[29] Zimmerman W R, Destefano N E, Freer M, Gai M and Smit F D 2011 Phys. Rev. C 84 027304
[30] Raduta A R et al. 2011 Phys. Letts. B 705 65
[31] Zimmerman W R et al. 2013 Phys. Rev. Lett. 110 152502
[32] Marin-Lambarri D J, Bijker R, Freer M, Gai M, Kokalova T, Parker D and Wheldon C 2014 Phys. Rev. Lett.

113 012502
[33] Rosensteel G and Rowe D J 1977 Ann. Phys. N.Y. 104 134
[34] Leschber Y and Draayer J P 1987 Phys. Letts. B 190 1
[35] Castaños O, Draayer J P and Leschber Y 1988 Z. Phys. A 329 33
[36] Entem D R and Machleidt R 2003 Phys. Rev. C 68 041001
[37] Shirokov A, Vary J, Mazur A and Weber T 2007 Phys. Lett. B 644 33
[38] Tobin G K, Ferriss M C, Launey K D, Dytrych T, Draayer J P and Bahri C 2014 Phys. Rev. C 89 034312
[39] Escher J and Draayer J P 1999 Phys. Rev. Lett. 82 5221
[40] Dytrych T, Sviratcheva K D, Draayer J P, Bahri C and Vary J P 2008 J. Phys. G: Nucl. Part. Phys. 35

123101
[41] Rosensteel G and Rowe D J 1983 J. Math. Phys. 24 2461
[42] Rowe D 1984 J. Math. Phys. 25 2662
[43] Hecht K 1985 J. Phys. A 18 L1003
[44] Rosensteel G 1990 Phys. Rev. C 42 2463
[45] Rowe D, Rosensteel G and Carr R 1984 J. Phys. A: Math. Gen. 17 L399
[46] Harvey M 1968 Adv. Nucl. Phys. 1 67
[47] Rosensteel G and Draayer J P 1985 Nucl. Phys. A 436 445
[48] Rowe D J 1967 Phys. Rev. 162 866
[49] Peterson D and Hecht K 1980 Nucl. Phys. A 344 361
[50] Dytrych T, Maris P, Launey K D, Draayer J P, Vary J P, Caprio M, Langr D, Catalyurek U and Sosonkina

M 2014 to be submitted to Phys. Rev. C
[51] Ajzenberg-Selove F and Kelley J 1990 Nucl. Phys. A 506 1
[52] Freer M et al. 2011 Phys. Rev. C 83 034314
[53] Launey K D, Dytrych T, Draayer J P, Tobin G K, Ferriss M C, Langr D, Dreyfuss A C, Maris P, Vary

J P and Bahri C 2013 Symmetry-adapted No-core Shell Model for Light Nuclei Proceedings of the 5th
International Conference on Fission and properties of neutron-rich nuclei, ICFN5, November 4 - 10,
2012, Sanibel Island, Florida, edited by J. H. Hamilton and A. V. Ramayya (Singapore: World Scientific)
p 29

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012054 doi:10.1088/1742-6596/597/1/012054

11


