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Abstract. We review and supplement the recent result by the authors on the reduction of
the three dimensional R (3d R) satisfying the tetrahedron equation to the quantum R matrices

for the g-oscillator representations of U(J(Dﬁl)7 U, (Agi)) and U,(C$). A new formula for the
3d R and a quantum R matrix for n = 1 are presented and a proof of the irreducibility of the
tensor product of the g-oscillator representations is detailed.

1. Introduction

This paper is a summary and supplement of the recent result [9] by the authors, which is
motivated by the earlier works [13, 2, 11]. The tetrahedron equation (1) [14] is a three
dimensional generalization of the Yang-Baxter equation [1]. In [11] a new prescription was
proposed to reduce it to the Yang-Baxter equation Rj2/13R23 = R2 31 3R12 by using the
special boundary vectors defined by (3) and (10). Applied to a particular solution of the
tetrahedron equation (3d L operator [2]), the reduction was shown [11] to give the quantum
R matrices for the spin representations [12].

In [9] a similar reduction was studied for the distinguished solution of the tetrahedron equation
which we call 3d R. The 3d R was obtained as the intertwiner of the quantum coordinate ring
A,(sl3) [6], (The original formula on p194 therein contains a misprint.) and was found later
also in a different setting [2]. They were shown to coincide and to constitute the solution of
the 3d reflection equation in [7]. See [9, App. A] for more detail. The main result of [9] was
the identification of the reduction of the 3d R with the quantum R matrices for the quantum

affine algebras U, = Uq(Dfﬁzl), Uq(Aéi)) and Uq(Cr(Ll)). Their relevant representations turned
out to be new infinite dimensional ones which we called the g-oscillator representations. There
are two kinds of boundary vectors, which curiously correspond to the choices of the above three
algebras. See Remark 5.

This paper contains a summary of these results and a few supplements. The formula (9) for
the 3d R and (19) for the quantum R matrix for n = s = ¢ = 1 case are new. Section 4 recollects
a proof of the irreducibility of the tensor product of the g-oscillator representations whose detail
was omitted in [9]. The result for n = 1 was reported earlier in [8]. More recently it has been
shown that the g-oscillator representations [9] quoted in Prop. 1-3 here actually factor through

a homomorphism from Uy to the n fold tensor product of the g-oscillator algebra [10].
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Throughout the paper we assume that ¢ is generic and use the following notations:

m

G =10 =20 @ = @am () = s =T =L

Pt K @m—k’ q—q!

i

where the ¢g-binomial is to be understood as zero unless 0 < k < m. [m]qt with ¢ = 1 will simply
be denoted by [m].

2. Reducing the tetrahedron equation to the Yang-Baxter equation
2.1. General scheme using boundary vectors
Let F be a vector space and R € End(F®?). Consider the tetrahedron equation:

Ri24R135R236R156 = RaseRa36R135R124 € End(F°) (1)

where R; ;. acts as R on the ¢, j, k th components from the left in F®6,

We recall the prescription which produces an infinite family of solutions to the Yang-Baxter
equation from a solution to the tetrahedron equation based on special boundary vectors [11].

Qg 7 7

First we regard (1) as a one-site relation, and extend it to the n-site version. Let F lﬁ*”, 1” be the
copies of F', where o, ; and 7; (1 = 1,...,n) are just labels. Renaming the spaces 1,2, 3 by them
gives Ry, g;.aRa; v 588 7.68456 = Ras56R8; ~,,6Ra;~,5Rq;,8;,4 for each i. Thus for any i one
can carry Ry 56 through R, g, 4Ra; ~,,518; 4,6 to the left reversing it into Rg, ~, 6Ra;~:,5Ra;,8;,4-
Applying this n times leads to

(Ral,ﬂ174R06177175R,81,71,6) e (Ran,ﬂnAROéannyE)Rﬁn:’Yn76)R47576 (2)
= Ra5.6(Rg1 .6 Rorm s Bar i)+ (B a6 By 5 R 6,,4) -

« 1] ol 4 5 6
This is an equality in End(F ® F® F® F ® F ® F), where a = (a,..., ) is the array of

a aq an B oi
labels and F' = F @ --- @ F (= F®"). The notations F' and F should be understood similarly.
Next we introduce special boundary vectors. Suppose one has a vector |xs(x)) € F depending
on a variable x such that its tensor product

|Xs<x7y)> = ‘Xs(w» ® ‘Xs(wy» ® ‘Xs(y» EFRFQF (3)

satisfies the relation
Rlxs(z,y)) = Ixs(2, ). (4)

The index s is put to distinguish possibly more than one such vectors. Suppose there exist
vectors in the dual space

(Xs(@,y)| = (Xs (@) @ (Xs(zy)| © (xs(y)| € FF @ F* @ F*

having the similar property
(Xs(z, y)|R = (xs(z,9)|. (5)
Then evaluating (2) between (xs(x,y)| and |x;(1,1)), one obtains

(1)) € End(F o ), (6)

Sa,,@(z) = Qs’t(z) <X5(z)|R0417/31,3R0¢27/32,3 - Ra, 8.3

where 0*!(z) is inserted to control the normalization. The composition of R and matrix elements
are taken for the space signified by 3. One may simply write it as S(z) € End(F®" @ F®")
dropping the dummy labels. The S(z) depends on s and t although they have been temporarily
suppressed. It follows from (2), (4) and (5) that S(z) satisfies the Yang-Baxter equation:

S0,8(2)Say(2Y) S~ (Y) = Sy (Y)Sany (1Y) Sa,s() € End(% ® l% ®F )- (7)
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2.2. A realization of the scheme
We focus on the solution R of the tetrahedron equation mentioned in the introduction. Take
F' to be an infinite dimensional space F' = €, Q(g)|m) with the dual F* = €D,,,>, Q(q)(m|

having the bilinear pairing (I|m) = (¢*)m0;m. Then the 3d R is given by

a,b,c
Ry @)@ k)= > Rijila)®[b)®|d), (8)
a,b,c>0
a,b,c a c i c—a B Aa 7
A+pu=b g2 \M/ g2

where 5; = 11if i = j and 0 otherwise. The sum is over A\, € Z>q such that A + p = b with

the further condition p < 4. It satisfies (q2)a(q2)b(q2)cRZ’ﬁ’,§ = (¢®)i(d®);(¢*k R({]bkc 9, eq.(A.1)].
The formula (9) is simpler than [9, eq.(2.10)]. Its derivation will be given elsewhere.

The two boundary vectors satisfying (4) and (5) are known [11] and given by

m

o)=Y (q";<m o) = 3 Zlem) (5= 1.2). (10)

m>0 m>0

Given two boundary vectors, one can construct four families of solutions to the Yang-Baxter
equation S(z) = S%!(2) = S%(z,q) (s,t = 1,2) by (6) by substituting (9) and (10). Each family
consists of the solutions labeled with n € Z>;. They are the matrices acting on F®" @ F®"
whose elements read

. . b
S () @15) =Y 5% (2)f7 [a) @ |b), (11)
a,b
b ZCO (q2) ,b 5 7b 5 — 7bn7 1 En—. ’l’L7b’l’La n—.
SS t( )ij B QS’t (Z) Z ( 82) ( lic; ?11]11708100R722J22§21 e R?:fll,jnfll,ccnflz ?najn,tin 17 (12)
0y >0 1 Je0 D" Jen

where [a) = |a1) ®- - ®|a,) € F®" for a = (a1,...,a,) € (Z>0)", etc. By Applying [9, eq.(A.1)]
to (12) it is straightforward to show

1 217(¢%)ar (¢2)

L Z%jr 2 2y s s
stv%z)?‘,:ib/gfv%z):(f[ T )”)SS’% DRENPED) (13)
b'r

where @ = (ay,...,a1) is the reverse array of a = (ay,...,a,) and similarly for b,i and j.
Henceforth we shall only consider S 1( ), S12(2) and S$%2(z) in the rest of the paper. The
matrix elements R} bkc (9) and S*'(2 ) (12) are depicted as follows:

b'll
b , Z’n*tc’ﬂ Ix¢(1))
abe i k t(.\ab ) . el an
Rk = >K O N
: " c1 a2
’ {xs(2)| seo a1 J2
J1
Due to § factors in (9), S%%(z) obeys the conservation law
SSt() =0 unless a+b=i+j (14)
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and the sum (12) is constrained by the n conditions by + sco = j1 +¢1,..., by + 1 = jn + tcy
leaving effectively a single sum. For (s,t) = (2,2), they further enforce a parity constraint

22/ \ab _ 0 s
S (z)f‘J =0 unless |a] =i, |b|=[j| mod 2, (15)
where |a] = a1 + - - - + ap, etc. Thus we have a direct sum decomposition

§%2(2) = ST () © ST (2) @ ST () @ ST (2), (16)

§42(2) € End((F™")e, ® (F"),),  (F*x= @ Qk).  (7)
ae(Zzo)",(q)\a\:il

We dare allow the coexistence of somewhat confusing notations S%!(z) and S2(2) expecting
that they can be properly distinguished from the context. (A similar warning applies to o*!(z2)
in the sequel.) We choose the normalization factors as

. 22. 2 PR 4 €1€2
Q1’1<2)= (Z,Q)oo 7 91,2(2): ( 7Q)oo , Qel,eg(z):( ( 7Q)C)>OOO> ) (18)

(—2¢;9)oo (—2%¢;¢%)oo (g% ¢*
Then the matrix elements of S11(z), S12(2) and S¢2(2) are rational functions of ¢ and 2.

2.3. Example

Let us present an explicit form of the matrix element (12) for n = 1. It was worked out earlier
a, ,C
0,7,k

the case s = t = 1 and write S*!(z )?Jb as S(z )lj with a,b,4,j € Z>o. A direct calculation using
(9) and (18) leads to

in [8, Prop.2] by using a formula for R.".>" different from (9). For simplicity we concentrate on

Vo), (o) = i @@ g

S @13) =D S2);

7, 2 2 a,b’
0 ’ (4%)a(g?)s )
ab _ catrb N 1A o tu(u-1) (1) (AT (@G Di—a(z@arr—p .
= DA <a<i).
SN =0 0 (Q( ), e 0zasi

The last sum is over A\, u € Z>( such that A+ p = j and A +7 > b. Thus it is actually a single
sum over max(0,b—¢) < A < j. The formula (19) is simpler than [8, eq.(2.19)]. From our main

Theorem 4 it follows that Sa b(z =1)= 5?55’ , which is consistent with the above result.

3. Quantum R matrices for g-oscillator representations
The Drinfeld-Jimbo quantum affine algebras without derivation U, = U, (D7(12421) Uq(AgL)) and

Uq(C,Sl)) are the Hopf algebras generated by e;, f;, kiﬂ (0 < i < n) satisfying the relations [3, 4]:

a;; —a;q ]‘% - k"il
klkl_l - kl_lkz - 17 [klvk]] = 07 klejk';l = q@'”ej7 klf]kl_l = qz Zij? [ezufj] - 574]77217
1—as; 1—ai;
ST e =0, 3 ()P ETTY =004 9),
v=0 v=0
where e = e//[v]g fi(y) = fV/[v]g! with [v], = [v]qlv — 1]4---[1]g- The Cartan matrix

(alj)ogwgn [5] is given by a;; = 26;; — max((logg;)/(logq;),1)d};—j,1- The data g; is specified
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above the corresponding vertex ¢ (0 < ¢ < n) in the Dynkin diagrams:

(2 (2 1)
Dn-&)-l AQn) C7EL
3 i g2 2 2 2
q2 9 ¢ qa q q2 4 4 qa q q° 9 q q
O==O0—O—------ —O0=0 O=<O—O—------ —O0=<0 O==0—0—------ —O=<0
0 1 n—1 n 0o 1 2 n—1 n 0 n—1 n

We employ the coproduct A of the form A(kF') = k! @ k!, A(e;) = 1 ®e; +¢; ® k; and
A(f) = fi@l+ k' @ fi.

3.1. q-oscillator representations R

We introduce representations of U, on the tensor product of the Fock space F®™ or F®", where
F= D,.~o (C(q%)|m> is a slight extension of the coefficient field of F'. They all factor through
an algebra homomorphism from U, to the g-oscillator algebra as shown in [10, Prop. 2.1]. As

in the previous section we write the elements of F®" as m) = |m;) ® --- ® |m,) € F&"

for m = (my,....,my) € (Z>0)" and describe the changes in m by the vectors e; =
i

(0,...,0,1,0,...,0) € Z™. In the following propositions xk = g% and x is a nonzero parameter.

Proposition 1. The following defines an irreducible Uq(Dr(fJZl) module structure on F®™.

eolm) = zjm + eq),
folm) = ixmi]z ™ m — e),
Kolm) = —ig™ 4 |m),
ejlm) = [mg]!m ejt+ejr1) (1<j<n-1)
f]|m> [mj11]jm + € — ej+1> (1<j<n-1),

)= g m) (1< <n—1),

)=

)=

)

en|m) = m[mn”m —ep),

kj]m

folm) = |m +ey),

—Mp—=

kn|m) = iq 2 |m).

Proposition 2. The following defines an irreducible Uq(Agl)) module structure on F®™.

eplm) = zjm + ey),
folm —m[ml] “Hm — ey),

m1+ ‘m>
[mJ”m —ejtejp) (1<j<n-—1),
[mjr]lm+ej—ejp) (1<j<n-1),
g " m) (1<j<n—1),

ko’m
ej|m

)
)
)=
)=
film) =
)=
)=
)=
)=

k:j|m
n -1
en|m m][[Q]Q]]m— 2e,,),
fn|m |m+ 2e,),
k:n]m —2mn— 1‘m>
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Proposition 3. The following defines an irreducible Uq(C,(LI)) module structure on (F®™), and
(F®™)_ defined in (17).

eolm) = z|m + 2e1),

folm) = Wﬂ[{;;_“xwm ~ 2e1),

q2m1+1|m>

)=

) =[m;llm—ej+ej) (1<j<n-—1),

) =[mjn]lm+e;—ejp) (1<j<n-—1),

kjlm) = ¢~ T m) (1<) <n—1),

y = [l — 1]
[2]?

) = |m + 2e,),
)=

2mn—1|m>.

lm — 2e,),

We call these irreducible representations the g-oscillator representations of U,. For the twisted

case Uy (D éll) and U, (A( )) they are singular at ¢ = 1 because of the factor k.

3.2. Quantum R matrices

Let V = F®" for U, (Déll) Uq(Agi)) and V = F®" for Uq(C,(ll)). First we consider U, (Dggl)

and Uq(AgzL)). Let V, = F®n [z,27!] be the representation space of U, in Propositions 1 and 2.
By the existence of the universal R matrix [3] there exists an element R € End(V, ® V,) such
that

A'(g)R = RA(g) Vg e U, (20)

up to an overall scalar. Here A’ is the opposite coproduct defined by A’ = P o A, where
P(u®v) = v ®u is the exchange of the components. A little inspection of our representations
shows that R depends on = and y only through the ratio z = x/y. Moreover V, ® V, is
irreducible ([9, Prop. 12] and Sec. 4 of this paper) hence R is determined only by postulating
(20) for g = ky, e, and f, with 0 <7 < n. Thus denoting the R by R(z), we may claim [4] that
it is determined by the conditions

(kr ® kT)R(Z) = R(z)(kr X kr)a (21)
(e, @14k ®e)R(z) = R(2)(1®er + e, R ky), (22)
(1@ fr+ fr @k HR(2) = R(2)(fr @1+ k' @ f) (23)

for 0 <r < n up to an overall scalar. We fix the normalization of R(z) by
R(2)(|0) ® ]0)) = [0) ® |0), (24)

where |0) € F® is defined in the beginning of Section 3.1 with 0 = (0,...,0). We call the
intertwiner R(z) the quantum R matriz for g-oscillator representation. It satisfies the Yang-
Baxter equation

Ria(x) R13(wy) Ra3(y) = Ras(y)Ris(xy) Riz(z). (25)
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Next we consider Uq(Cfll)). Denote by V.t = (F®")y[x,z~!] the representation spaces in
Proposition 3 and set V, = V,F @ V7 = F®"[z, 27!]. See (17) for the definition of (F*").. We
define the quantum R matrix R(z) to be the direct sum

R(z)=R™ ()@ R ()@ R (2)® R (2), (26)
where each R12(z) € End(V; ' @V;?) is the quantum R matrix with the normalization condition
++ _ —ig!/?
R (2)(10) ©10)) = [0) @ 0). R (2)(10) @ fer)) = 2L j0) & ).
—igh/? L2 (27)

R (2)(|le1) ® |0) = le) @10),  R™7(2)(le1) ® ler)) = qu2|e1> ® leq).

1—2z 1-—

The R matrix R(z) satisfies the Yang-Baxter equation (25). In fact it is decomposed into the

finer equalities (€1, €2,€3 = £)

R (@) R (ay) RG ™ (9) = B () RS (a) RS (2).

3.8. Main theorem R .
Define the operator K acting on F®" by K|m) = (—ig2 )™ T |m). Introduce the gauge
transformed quantum R matrix by

R(z) = (K'®1)R(2)(1 ® K). (28)

It is easy to see that R(z) also satisfies the Yang-Baxter equation (25).
In Section 2.2 the solutions S**(z) of the Yang-Baxter equation have been constructed from
the 3d R in (11), (12) and (18). In Section 3.2 the quantum R matrices for g-oscillator

representations of Uq(Dng), Uq(Agi)) and Uq(Cy(Ll)) have been defined. The next theorem,
which is the main result of [9], states the precise relation between them. (See (13) for S*1(2).)

Theorem 4. Denote by Ry(z) the gauge transformed quantum R matriz (28) for U,(g). Then
the following equalities hold:

Shi(z) = Rpffjl(z)’ SY2(z) = RAQ(Z% §22(2) = Ry (2),

where the last one means SV2(z) = RO2(z) between (16) and (26) with the gauge
transformation (28).

Remark 5. Theorem 4 suggests the following correspondence between the boundary vectors
(10) with the end shape of the Dynkin diagrams:

0 n
xi(x)] o= —>0 (1)
0 n

(el o= =<0 |x2(1))

Consistently with Remark 5, $>!(z), which is reducible to S12(21/2) by (13), is identified [10]

with the quantum R matrix for g-oscillator representation of another Uq(Agi)) realized as the
affinization of the classical part U,(B,,). (Proposition 2 corresponds to taking the classical part
to be Uy(Cy).) As far as (xi(z)| and |x1(1)) are concerned, the above correspondence agrees
with the observation made in [11, Remark 7.2] on the similar result concerning a 3d L operator.

With regard to (x2(z)| and |x2(1)), the relevant affine Lie algebras Agi) and C{V in this paper

are the subalgebras of BT(LQI and D7(11422 in [11, Theorem 7.1] obtained by folding their Dynkin
diagrams.
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4. Proof of the irreducibility of the tensor product
In [9] we gave a proof of the following proposition.

Proposition 6 (Prop. 12 of [9]). As a Uy(D 7(1_&1) or U, (Agn)) module V, ®@ V), is irreducible. As

a Uq(CT(ll)) module each Vit @ V2 (€1, e2 = %) is irreducible.

Since the explanation there was not sufficient, we give the detailed proof here. Let

g= D7(12—i)-17Agm) or C,(Ll), I= {O, 17 ...,n}, and for a subset J of I let Uy(gs) be the subalgebra
of Uy(g) generated by {e;, fj, Y| j € J}. Recall the vector v; [9, Prop. 4] for g = D(JZI and
vj [9, Prop. 5] for Agn),C( ),

Proposition 7. For g = D7(12+)1
B2 = Ug(angop)urs

=0

and for g = Agl), C(l)

VEeVe = Z Ug(81\{0})v;

=0
(—Dl=ejen
This is an immediate consequence of the following two lemmas. Set w;; = |ke,—1) ® |(I —
ke, € VE2(1>0,0<k<I).

(2)

Lemma 8. Forg= D,

l

Wy k S Z Uq(g{n—l,n})vj7
7=0

and for g = AP C'(l)

2n

wy g € Z Ug(9{n—1,n})v; where e = (—1)k.

j=l (mod 2)

Proof. We treat the g = fo_&l case first. Note that the set of vectors B = {v;, favi_1,. .., fivo}
is linearly independent in the vector subspace spanned by {|ke,) @ |(I — k)e,) | 0 < k < [}.

Hence, B is also a basis and

l
wyo = ’0 & ]len S ZUq g{n} (29)
7=0

Next note that

I—k+1/2

Wi = (fae1fn — @ Fafoo1)Wim1 g1+ ]fn—lwz,kq (1<k<I).

l—k+1
This relation together with (29) shows the result.
Suppose now g = A2, CY. We compare B’ = {0, Favf oo fE05 o} (U = [1/2] (e =

2n >

+), = [(I-1)2] (e = —)) and the subspace spanned by {|ke,)®|(I—k)e,) | 0 < k <1, (—1)F = ¢}.
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We have

wio = [0) @ |le,) € Z Ug(8gn})0;

J=l (mod 2)

len) ® (I —1)ey) € Z Ug(ggny)v; (12 1).

J=l (mod 2)
From
q ! 1
w1 = fo—1vy, w21 = WUO_ + an—lvg_a
-1 gl _
wiy = 7 ) P [2[]“]% o — 0 Fufaet)len) ® | — 3)en)
4!
+ an,ﬂen) @[l =1)en) (I1>3),
1 ., _1 o, gAl—2k+1 )
wy = (m n-1fn =@ fo-tfafoo1 @ fofpo) W2 k-2 + =k —k+2 Sr—wi k-2
(2<k<l),
we obtain the result. OJ

Lemma 9. Let W, be the vector subspace of V®? spanned by | 225 ki) @ | 220 kjej) such
that 3%, (kj +k}) = 1. Then we have

Wi= > Uy(anon) Wik
0<k<lI

Proof. As a Uy(91\{0,n}) (= Uy(Apn—1))-module W; is isomorphic to @2:0 L(key,)® L((1 — k)ey,),
where L(\) stands for the irreducible highest weight U, (A, —1)-module with highest weight .
By representation theory of Uy(A,—1), L(ke,) ® L((I — k)ey,) is generated by the highest weight
vectors of weight of the form je,_1 + (I — j)e, for some 0 < j < min(k,l — k). Hence, it is
enough to show that any vector in W of weight of the form (I — j)e, + je,—1 is generated by wy ;
over Uy(ggn—1})(= Uy(sl2)). But it is a well-known fact from representation theory of Uy(slz),
namely, L(ae,) ® L(ben) is generated by |ae,_1) ® |be,), where |ae,—_1) (resp. |bey,)) is the
lowest (resp. highest) weight vector. O
Proof of Prop. 6. Suppose g = D7(12+)1
of Prop. 12 of [9], we have shown that W contains v; for any [ > 0. Similarly, for g = Agl)

and let W be a nonzero submodule of V®2. In the proof

(resp. 07(11)), using Lemma 8 (resp. 10) of [9], we can show a nonzero submodule W of V&2
(resp. V' @ V) contains vf for any [ > 0,e = =& (resp. v; for any [ such that (—1) = ere).
The claim now follows from Prop. 7. O
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