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Abstract. In the present paper the problem of symmetry breaking in the systems with a small-

world property is considered. The obtained results are applied to the description of the 

functional brain networks. Origin of the entropy of fractal and multifractal small–world 

systems is discussed. Applying the maximum entropy principle the topology of these networks 

has been determined. The symmetry of the regular subgroup of a small-world system is 

described by a discrete subgroup of the Galilean group. The algorithm of determination of this 

group and transformation properties of the order parameter have been proposed. The integer 

basis of the irreducible representation is constructed and a free energy functional is introduced. 

It has been shown that accounting the presence of random connections leads to an integro-

differential equation for the order parameter. For 𝑞-exponential distributions an equation of 

motion for the order parameter takes the form of a fractional differential equation. We consider 

the system that is described by a two-component order parameter and discuss the features of 

the spatial distribution of solutions. 

1.  Introduction 

Recently Eguiluz et al. [1] have presented a method of construction of functional brain networks 

proceeding from the results of functional magnetic resonance imaging measurements in a human. In 

these experiments, a magnetic resonance activity of certain parts of brain (so-called voxels) is 

measured at each discrete time step. By 𝑥𝑖 𝑡  we denote a voxel’s activity at the instant of time 𝑡. It 
was proposed to consider that two voxels are functionally linked if the value of their temporal 

correlation exceeds a certain positive value 𝑟𝑐  independent of the value of their anatomical connection. 

The correlation coefficient between any pairs of voxels 𝑥𝑖  and 𝑥𝑗  is calculated as  

 𝑟 𝑖, 𝑗 =
 𝑥𝑖(𝑡)𝑥𝑗 (𝑡) − 𝑥𝑖(𝑡)  𝑥𝑗 (𝑡) 

𝜍(𝑥𝑖(𝑡))𝜍(𝑥𝑗 (𝑡))
 (1) 

where 𝜍2 𝑥𝑙 𝑡  =  𝑥𝑙
2(𝑡) −  𝑥𝑙(𝑡) 2, brackets  …   represents temporal averages and 𝑥𝑙(𝑡) is the 

blood oxygenation level dependent signal of the voxel 𝑖 in case of brain scanning data. 

The elements of the correlation matrix determine the value of correlations among various parts of 

the cerebral cortex. Using highly correlated nodes Eguiluz et al. [1] have constructed a network and 

determined that the degree distribution of the obtained network has the form 𝑝 𝑘 ~𝑘−𝛾 , where 𝛾 ≈ 2 

(figure 1) [1]. It has been also shown that these networks possess a small-world structure, a 

community structure and are fractals [2].  
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However it should be stressed that the degree distributions for 𝑟𝑐 = 0.6 and 𝑟𝑐 = 0.7 are actually 

described by the 𝑞-exponentional distribution 

 𝑝 𝑘 = 𝑐  1 −  1 − 𝑞 
 𝑘−𝑘0 

𝛼

𝜅𝑐
 
−

𝑞

𝑞−1
 (2) 

and for 𝑟𝑐 = 0.7, 𝛼 ≈ 1 whereas for 𝑟𝑐 = 0.6, 𝛼 > 1 [3]. For 𝑟𝑐 = 0.5 the form of the degree 

distribution of the correlation network is characteristic of stretched exponential probability 

distributions [3]. Fitting with the help of formula (2) is actually performed by using the maximum 

likelihood method [5]. 

In paper [6] the correlation network obtained from functional magnetic resonance imaging 

measurements is compared with that of the derived from the numerical simulation of 2D Ising model 

at various temperatures. Near the critical temperature a striking similarity in statistical properties of 

these two networks are observed and it makes them indistinguishable. The similarity of these networks 

allows to suppose that a collective dynamics is inherent in a human brain.  

On the other hand it also follows that the dynamics of the brain functioning in such systems takes 

place near the critical point and generates spatio-temporal structures. 

To study the dynamics generating spatio-temporal structures in brain we develop the theory of the 

Landau – Ginzburg type for the systems with a small-world structure. 

We first introduce an algorithm to generate small-world networks. Then applying the maximum 

entropy principle and accounting multifractality of the system we determine a degree distribution for 

such systems.  

 

 

Figure 1. Degree distribution for three values of the correlation 

threshold. The inset depicts the degree distribution for an 

equivalent randomly connected network. Figure taken from [1]. 

 

Using the principle of least action we derive the equation of motion for the order parameter 

representing spatio-temporal structures near the critical point. We also consider a specific example. 

2.  Topology of functional brain network with a small-world property 

The algorithm constructing a small-world network was for the first time proposed by Watts and 

Strogatz [7]. At the initial instant of time there is one-dimensional lattice of 𝑁 nodes with periodic 

boundary conditions where each link connecting a vertex to one of its 𝑘 nearest neighbours in the 

clockwise sense is left in place with probability 1 − 𝑝, and with probability 𝑝 is reconnected to a 

randomly chosen other vertex. Long range connections are therefore introduced. As a result a network 

structure with a small-world property emerges. However this network is not scale-free that is it has 

degree distributions with non-power law forms [8]. 
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A human brain consists of ~1010 neurons, each of which is connected with other neurons by 

~2 ∙ 104 links. As is shown in [1] the degree distributions of functional brain networks in the log-log 

scale have a rectilinear region. Then another construction of a small-world network is a more 

convenient model for a human brain. We proceed from a closed system of 𝑁 nodes with periodic 

boundary conditions where each node is connected with the neighbors by 𝑛 links. A new edge is added 

to this system at each instant of time, one of the ends of this edge being connected with one of the 

nodes of the regular lattice with probability 1/𝑁 while the other end of the edge being connected with 

that in accordance with the preferential attachment principle 𝑘𝑖 𝑡 /  𝑘𝑗  𝑡 𝑗 . Thus the rate of the 

connectivity 𝑘𝑖 𝑡  change of the node (without taking into account the contribution of the initial 

regular graph edges) is determined by two contributions and represented by the equation 

 
𝜕𝑘𝑖 𝑡 

𝜕𝑡
=

𝐴

𝑁
+ 𝐴

𝑘𝑖 𝑡 

 𝑘𝑗  𝑡 𝑗
. (3) 

Taking into account that at the instant 𝑡 a full network connectivity is    𝑘𝑗𝑗 = 2𝑡 and the change 

in the total degree of the network at one time step is ∆𝑘 =   𝑘𝑖 𝑡 − 𝑘𝑖 𝑡 − 1  𝑖 = 2 we obtain 

𝐴 = 1. Then equation (3) takes the form  

 
𝜕𝑘𝑖 𝑡 

𝜕𝑡
=

1

𝑁
+

𝑘𝑖 𝑡 

 𝑘𝑗  𝑡 𝑗
. (4) 

The solution of this equation has the form 

 𝑘𝑖 𝑡 = 2𝑡/𝑁 + 𝑐𝑡1/2, (5) 

where 𝑐 is a constant of integration which can be determined from the condition  𝑘𝑖 𝑡 = 2𝑡𝑖 . The 

degree distribution of this network is described by the 𝑞-exponential distribution in the form [9] 

 𝑝𝑠𝑡 𝑘 = 𝑍−1  1 −
1

𝛽
 1 − 𝑞  𝑘 − 𝑘0 

2 

𝑞

1−𝑞 . (6) 

Here 𝑞 is a measure of complexity of the system. The value 𝑞 = 1 corresponds to the degree 

distribution in the form of the Gaussian distribution emerging at large temporal shaping of such 

system. At 𝑞 ≠ 1 and for large enough 𝑘 the network is characterized by the degree distribution 

emerging at the earlier steps of forming a network. Distribution (6) describes the results of processing 

of functional magnetic resonance imaging measurement data 𝑟𝑐 = 0.6  [1] pretty well.  

The presented algorithm shows that order and disorder are inherent in small-world systems.  

However it should be taken into consideration that the structure of these networks may be 

homogeneous, fractal and multifractal.  

To derive a distribution function for such systems we use the maximum entropy principle. 

The famous Boltzmann-Gibbs entropy which is determined as  

 𝑆 =  𝑠𝑖 =  𝑝𝑖 𝑙𝑛 𝑝𝑖
𝑊
𝑖=1

𝑊
𝑖=1  (7) 

is characteristic for homogeneous structures, where the distribution function 𝑝 𝑥  is normalized to 

unity. 

We consider the quantity 

 𝐺𝐼 = − 𝑝 𝑙𝑛 𝑝 𝑑𝑝
1

0
. (8) 

Fractional generalization of this integral gives 

 𝛤 𝛼 𝐺𝐼 = − 𝑝𝛼1

0
𝑙𝑛 𝑝 𝑑𝑝, (9) 

where 𝛤 𝛼  is a gamma function.  

For admissible systems when 𝑆 =  𝑠𝑖𝑖  in case of a fractal structure we have 𝑠𝑖=𝑝𝑖
𝛼 ln 𝑝𝑖  presenting 

the Shafee entropy [8]. It is clear that at 𝛼 = 1 we obtain the Boltzmann – Gibbs entropy. 
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A multifractal is a mixture of fractals. Suppose that dimensions of fractals in a multifractal are 

distributed uniformly that is 𝑓 𝛼 = 1/(𝛼 − 1). Then multiplying (9) by 𝑓 𝛼  and integrating over 𝛼 

we obtain 

 𝐺𝑀 = − 
𝑝𝛼−𝑝

𝛼−1
𝑑𝑝

1

0
. (10) 

Consequently for admissible systems we have 

 𝐺𝑇𝑠𝑎𝑙𝑙𝑖𝑠 =  
𝑝𝑖−𝑝𝑖

𝛼

𝛼−1
𝑊
𝑖=1 , (11) 

representing the Tsallis entropy [7]. If 𝛼 → 1 the Tsallis entropy coincides with that of Boltzmann – 

Gibbs. 

These results can be generalized if we consider a multifractal structure as a mixture of fractal 

substructures. We introduce the distribution function 𝑓 𝛼  allowing to introduce an equation for 

determination of the systems entropy 

 𝑔 𝑝 ~  𝑒−𝑦𝜇

−𝑙𝑛 𝑝
𝑓 𝑦 𝑑𝑦. (12) 

In particular if 𝑓 𝛼 = 𝛿 𝛼 − 1 ,  𝑓 𝛼 = 𝛿 𝛼 − 𝜃  and 𝑓 𝛼 = 1/(𝛼 − 1) we obtain the 

Boltzmann – Gibbs, Shafee and Tsallis entropies correspondingly. It should be stressed that if 𝑓 𝛼  
has the form of a power-law function 𝑓 𝑦 = 𝑦𝛼−1 we obtain the Anteneodo – Plastino entropy [4] 

 𝑆𝛾 =  𝑠𝛾
𝑤
𝑖=1  𝑝𝑖 ,  (13) 

where  

 𝑠𝛾 𝑝𝑖 = 𝛤  
𝛾+1

𝛾
, − 𝑙𝑛 𝑝𝑖   − 𝑝𝑖𝛤  

𝛾+1

𝛾
 , (14) 

and 𝛤 𝜇, 𝑡  is an incomplete gamma function. 

Considering the standard constraints  𝑝𝑖
𝑤
𝑖=1 = 1 and  

  𝒪 𝑟  =  𝑝𝑖𝒪𝑖
 𝑟 𝑤

𝑖=1 = 𝒪𝛾
 𝑟 

, (15) 

where  𝒪 𝑟   are observed quantities and applying the maximum entropy principle we determine the 

distribution function 

 𝑝𝑖 = 𝑒𝑥𝑝  −  𝛤  
𝛾+1

𝛾
 + 𝛼 +  𝛽𝑟𝒪𝑖

 𝑟 𝑅
𝑟=1  

𝛾
 ,  (16) 

where 𝑖 = 1, … , 𝑤, and 𝛼 and  𝛽𝑟  are the Lagrange multipliers determined from the constraints. 

Distribution (16) is characteristic of the systems with a skewed degree distribution. Note that 

distribution function (16) describes the degree distribution of the functional brain network precisely 

enough in case 𝑟𝑐 = 0.5. 

Using the constraints  𝑝𝑖𝑖 = 1 , 𝑐𝑞
−1  𝑘𝑝𝑘

𝑞
𝑘 = 𝜇, 𝑐𝑞

−1  𝑘2𝑝𝑘
𝑞

𝑘 = 𝜌2 and entropy (11) in the 

framework of the maximum entropy principle we obtain the degree distribution in the form (6) 

describing the degree distribution of the functional brain network in case 𝑟𝑐 = 0.6, and where 𝑐𝑞 =

 𝑝𝑘
𝑞

𝑘  [9]. 

In case of constraints  𝑝𝑖𝑖 = 1,  𝑝𝑖𝑘𝑖𝑖 = 𝑘 and entropy (11) the maximum entropy principle 

gives a distribution function in the form 

 𝑃𝑠𝑡 𝑘 = 𝑍−1  1 −  1 − 𝑞 
𝑘

𝜅0
 

1

1−𝑞
, (17) 

where 
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 𝑍 =   1 −  1 − 𝑞 
𝑘

𝜅0
 

1

1−𝑞
𝑑𝑘

∞

0
, (18) 

describing the degree distribution of the functional brain network precisely enough in case 𝑟𝑐 = 0.7. 

3.  Order parameter in functional brain networks 

The exact solution of the Ising model has been found only for the one-dimensional and two-

dimensional cases in the zero external field [12]. So for the description of spatio-temporal structures 

occurring in the functional brain networks we shall develop a theory of phase transitions of Landau – 

Ginzburg type [13]. It should be stressed that the theory of phase transitions in graphs is discussed in 

[14] and analysis of the systems with long-range space interactions and temporal memory is given in 

[15]. We shall proceed from the construction of a small-world network which is a regular graph with 

additional shortening links. Under such consideration a regular substructure of a small-world network 

could possess a symmetry of the discrete subgroup of the Galilean group.  

There occurs a problem to determine transformation properties of the order parameter. To solve 

this problem we first have to determine a number of the components of the order parameter involved 

into the process under consideration. We proceed from the measured time series 𝑥 𝑡  and use the 

Takens method [16, 17]. Choosing from a set of experimental data 𝑁 equidistant points, we obtain a 

set of discrete variables 𝑥0 𝑡𝑖 ,… , 𝑥𝑛−1 𝑡𝑖 +  𝑛 − 1 𝜏 , where 𝑖 = 1, … , 𝑛 − 1 and 𝜏 is a temporal 

shift. It is necessary construct the points of the phase space and calculate a correlation function of the 

attractor. 

 𝐶 𝑟 =  
1

𝑁2
 𝜃 𝑟 −  𝑥𝑖 − 𝑥𝑗   

𝑁
𝑖,𝑗=1
𝑖≠𝑗

, (19) 

where 𝜃 𝑥  is the Heaviside function and 𝑟 is distance. Further we construct the dependence ln 𝐶 𝑟  
on ln 𝑟 [16, 17]. If the value of the slope 𝑑 depending on 𝑛 reaches a plateau above a certain 𝑛 then the 

system represented by the present temporal sequence must have an attractor. The value 𝑑 which 

reached saturation should be considered as a dimension of the attractor and the value 𝑛 above which 

the saturation is observed should be considered as the minimum number of variables necessary for 

modulation of the behavior corresponding to the current attractor [16, 17]. Based on the results of the 

analysis of the time series we can choose the 𝑛 as a number of the order parameters. 

If 𝐷0 𝑘    is an irreducible representation of the discrete subgroup of the Galilean group of a regular 

subgraph and  𝜂𝑖𝑗  , 𝑖 = 1, … , 𝑚, 𝑗 = 1,… , 𝑝 are the order parameters which are transformed in accord 

with this irreducible representation where 𝑚 is a number of wave vectors in the star  𝒌   ∗   of the 

irreducible representation 𝐷0 𝑘     and 𝑝 is dimension of a small representation, then the dimension 

𝐷0 𝑘     is = 𝑚 × 𝑝. Thus the choice of a particular irreducible representation could be made from the 

standard reference books of irreducible representations [18]. 

It should be stressed that if the wave vector under consideration is expressed irrationally in terms of 

vectors of the reciprocal lattice then only invariants of the rotation group have corresponding 

irreducible representations. If the wave vector is expressed rationally in terms of vectors of the 

reciprocal lattice then the irreducible representation under consideration admits anisotropic invariants. 

The phenomenon of hysteresis is inherent in a human brain and thus an irreducible representation 

may not satisfy the Landau condition that is contain invariants of the third order. 

As small-world systems are initially inhomogeneous a free energy functional must have the 

Lifshitz invariant. So the task is to consider irreducible representations corresponding to the internal 

points of the Brillouin zone. During the transition into modulated structures the point symmetry 

elements of the initial phase remain [19]. As the Landau and Lifshitz conditions are violated we deal 

with phase transitions of the first order. 
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4.  Derivation of the equation of motion for the order parameter near the critical point in the 

functional brain network 

To derive an equation of motion for the order parameter in the system with a small-world property we 

determine the free energy functional 𝐹 𝜂  in the form [13, 15]: 

 𝐹 𝜂 = 𝐹0 𝜂 + 𝐹𝐼 𝜂 , (20) 

Where 

𝐹0 𝜂 =  𝑅𝑑𝑟𝑑𝑡 𝑅𝑑𝑟′𝑑𝑡′  
1

2

𝜕𝜂  𝑟,𝑡 

𝜕𝑡
𝑔0 𝑟, 𝑡, 𝑟′ , 𝑡′ 

𝜕𝜂  𝑟 ′ ,𝑡 ′  

𝜕𝑡 ′
+

1

2

𝜕𝜂  𝑟,𝑡 

𝜕𝑟
𝑔1 𝑟, 𝑡, 𝑟′ , 𝑡′ 

𝜕𝜂  𝑟′ ,𝑡′ 

𝜕𝑟 ′
  (21) 

and 

 𝐹𝐼 𝜂 = − 𝑅𝑑𝑟𝑑𝑡 𝑅𝑑𝑟′𝑑𝑡′𝑉 𝜂 𝑟, 𝑡 , 𝑢 𝑟′ , 𝑡′  . (22) 

We took into account the presence of random shortening links in the structure. Here 𝑟 is a spatial 

coordinate, 𝑡 is time and the functions 𝑔0 𝑟, 𝑡, 𝑟′ , 𝑡′  and  𝑔1 𝑟, 𝑡, 𝑟′ , 𝑡′   describe the influence of the 

small-world property on the critical properties of the system. Integration is performed over the region 

𝑅 in two-dimensional space 𝑅2 to which  𝑟, 𝑡  belong. 

The equation of motion for the order parameter 𝜂 𝑟, 𝑡  is derived with the use of the Gateaux 

derivative of the functional 𝐹 𝜂 𝑟, 𝑡  , determined as: 

 𝛿𝐹 𝜂, 𝑕 =  
𝑑

𝑑𝜀
𝐹 𝜂 + 𝜀, 𝑕   𝜀=0 = 𝑙𝑖𝑚𝜀→0

𝐹 𝜂+𝜀,𝑕 −𝐹 𝜂 

𝜀
,  (23) 

where 𝑕 𝑟 = 𝛿𝜂 𝑟  is a smooth integrable function. 

Further it is suitable to introduce the functions: 

 𝐾0 𝑟, 𝑡, 𝑟′ , 𝑡′ =
1

2
 𝑔0 𝑟, 𝑡, 𝑟′ , 𝑡′ + 𝑔0 𝑟′, 𝑡′, 𝑟, 𝑡  , (24) 

 𝐾1 𝑟, 𝑡, 𝑟′ , 𝑡′ =
1

2
 𝑔1 𝑟, 𝑡, 𝑟′ , 𝑡′ + 𝑔1 𝑟′, 𝑡′, 𝑟, 𝑡   (25) 

and the symmetrical function 

 𝑈 𝜂 𝑟, 𝑡 , 𝜂 𝑟′ , 𝑡′  = 𝑈 𝑟, 𝑡 𝛿 𝑟 − 𝑟′ 𝛿 𝑡 − 𝑡′ . (26) 

We note that such choice of 𝐾0 𝑟, 𝑡, 𝑟′ , 𝑡′  and 𝐾1 𝑟, 𝑡, 𝑟′ , 𝑡′  allows to separate spatio-

temporal derivatives. The dynamic equation for the order parameter is determined from the principle 

of stationarity  𝛿𝐹 𝜂, 𝑕 = 0 and for the arbitrary function 𝑕 𝑟, 𝑡  has the form: 

  𝑑𝑡′  𝑑𝑟′
𝜕𝐾0 𝑟,𝑡,𝑟 ′ ,𝑡′ 

𝜕𝑡
∙
𝜕𝜂  𝑟 ′ ,𝑡 ′  

𝜕𝑡 ′
+  𝑑𝑡′  𝑑𝑟′ 𝜕𝐾1 𝑟,𝑡,𝑟 ′ ,𝑡 ′  

𝜕𝑡
∙
𝜕𝜂  𝑟 ′ ,𝑡 ′  

𝜕𝑟 ′ +
𝜕𝑈 𝜂 𝑟,𝑡  

𝜕𝜂  𝑟,𝑡 
= 0. (27) 

This is an integro-differential equation allowing to obtain an equation of motion for the order 

parameter for various kernels  𝐾0 𝑟, 𝑡, 𝑟′ , 𝑡′ 0 and 𝐾1 𝑟, 𝑡, 𝑟′ , 𝑡′ . 
We suppose that 𝐾0 𝑟, 𝑡, 𝑟′ , 𝑡′ = 𝛿 𝑟 − 𝑟′ 𝐺0 𝑡, 𝑡′ , 𝐾1 𝑟, 𝑡, 𝑟′ , 𝑡′ = 𝛿 𝑡 − 𝑡′ 𝐺1 𝑟, 𝑟′ . In this 

case time and the spatial coordinate separate. In case of one component order parameter in accord with 

the symmetry arguments 𝑈 𝜂 𝑟, 𝑡  =
𝛼

2
𝜂2 𝑟, 𝑡 +

𝛽

4
𝜂4 𝑟, 𝑡 , then from (27) we obtain: 

  𝐺0 𝑡 − 𝑡′ 
𝜕𝜂  𝑟,𝑡′ 

𝜕

𝑡

0
𝑑𝑡′ = − 𝐺1 𝑟 − 𝑟′ 

𝜕𝜂  𝑟 ′ ,𝑡 

𝜕

𝑟

0
𝑑𝑟′ − 𝛼𝜂 𝑟, 𝑡 − 𝛽𝜂3 𝑟, 𝑡 . (28) 

Here 𝛼 is a control parameter of the system and 𝛽 is a positive parameter. The form of the function 

𝑈 𝜂 𝑟    is determined from the condition of invariance. Hence 𝑈 𝜂 𝑟   includes the integer basis of 

invariants of the irreducible representation of the space group of the high symmetry phase. The 

solutions of (28) are investigated in [20]. 
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5.  Systems described by two-component order parameter  

In case of the system described by the two-component order parameter which is transformed according 

to the irreducible representation corresponding to the internal rational point of the Brillouin zone we 

have an integer basis consisting of two invariants. In the polar coordinate system these invariants have 

the form 𝜌2 and 𝜌𝑛 cos𝑛𝜑, where 𝜌 and 𝜑 are an amplitude and a phase of the order parameter 

correspondingly and 𝑛 is a parameter of anisotropy. 

In this case a spatial dependence of the order parameter in accord with (27) takes the form: 

  𝑑𝑧  −
𝑘

2
𝜌2 𝜕𝑘1 𝑥,𝑧 

𝜕𝑥

𝜕𝜑  𝑧 

𝜕𝑧
 + 𝑛𝛾𝜌𝑛 𝑐𝑜𝑠 𝑛𝜑 = 0. (29) 

The integral expression in (29) could be considered as averaging over the distribution function 
𝜕𝑘1 𝑥,𝑧 

𝜕𝑥
= 𝑃 𝑥, 𝑧 . The 𝑞-exponential distribution is characteristic of the topology of small-world 

systems and thus we could suppose that 𝑃 𝑟 = 𝑍−1exp𝑞 −𝜎𝑟 𝑞  where exp𝑞 𝑥 =  1 +  1 −

𝑞 𝑥 
1

1−𝑞 . Asymptotic behavior of 𝑃 𝑟 = 𝑍−1exp𝑞 −𝜎𝑟 𝑞  at 𝑞 > 1 has the form 𝑃 𝑟 ~𝑟
−

𝑞

𝑞−1  . In this 

case equation (29) takes the form: 

 
𝑑𝑣𝜙 𝑥 

𝑑𝑥𝑣 + 𝜔0
𝑣 𝑠𝑖𝑛 𝜙 𝑥 = 0, (30) 

where 𝜙 𝑥  is a renormalized phase of the order parameter. When 𝜐 = 2 the spatial distribution of 

𝜙 𝑥  is determined by the equation  

 
𝑑2𝜙 𝑥 

𝑑𝑥2 + 𝜔0
2 𝑠𝑖𝑛 𝜙 𝑥 = 0. (31) 

The first integral of this equation has the form  

 𝑕 =
1

2
 
𝑑𝜙 𝑥 

𝑑𝑥
 

2
− 𝜔0

2 𝑐𝑜𝑠 𝜙 𝑥 . (32) 

When 𝑕0 < 𝜔0
2 the solution is the periodic function 

 𝜙 𝑥 = 𝐵 𝑠𝑖𝑛 𝑥. (33) 

In case 𝑕0 > 𝜔0
2, the trajectory 𝜙 𝑥  increases indefinitely. 

 𝜙 𝑥 = 2𝑎𝑚 𝑥 , (34) 

where am 𝑥  is the Jacobi elliptic function. 

The solution corresponding to 𝑕0 = 𝜔0
2  determines a separatrices. In this case 

d𝜙 𝑥 

d𝑥
=

±2𝜔0cos
𝜙 𝑥 

2
, and for the initial condition 𝜙 𝑥 = 0 = 0 the solution of this equation has the form: 

 𝜙 𝑥 = 4𝑎𝑟𝑐𝑡𝑔 ±𝜔0𝑥 − 𝜋. (35) 

For finite motion the solution of fractional equation (30) is determined as 

 𝜙 𝑥 = −𝐵 𝜔0𝑥 
𝛼−1𝐸𝛼,𝛼 − 𝜔0𝑥 

𝛼 .  (36) 

Here 𝐸𝛼,𝛽 𝑧 =  
𝑧𝛼𝑛

Γ 𝛼𝑛+𝛽 
∞
𝑛=0  is the Mittag–Leffler function and the function 𝛤 𝛼𝑛 + 𝛽  is the 

Euler gamma function. 

When 𝛼 = 2 we have 𝐸2.2 −𝑧2 =
sin 𝑧

𝑧
 and the solution of the linear fractional equation has the 

form 𝜙 𝑥 = 𝐵 sin 𝑧 . When 1 < 𝛼 < 2, we have a continual number of differential equations. The 

oscillating function with a decreasing amplitude is a solution of (30). 
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6.  Conclusion 

Order and disorder are inherent in small-world systems and consequently in functional brain 

networks. We propose the algorithm constructing a network equivalent to functional brain networks. 

We suppose that a regular substructure of a small-world network could be described by a discrete 

subgroup of the Galilean group. In such approach random connections generate the medium in which 

the order parameter moves.  

We have presented the equations allowing to determine an entropy for fractal and multifractal 

small-world networks and applying the maximum entropy principle we have derived characteristic 

degree distribution functions. The obtained various distribution functions in the log-log scale have a 

rectilinear region. Using this property with the help of the principle of the least action we have derived 

an equation of motion for the order parameter in the form of a fractional differential equation.  

We have presented the algorithm for determination of the transformation properties of the order 

parameter. The Rapp diagram is constructed from the analysis of the measured time series. The 

number of the components of the order parameter is determined from this diagram. On the other hand 

the number of the components of the order parameter coincides with the dimension of the irreducible 

representation equal to that of the irreducible representation of a small group multiplied by a number 

of wave vectors in the star corresponding to the wave vector under consideration. These data can be 

found in literature [13].  

We show that in case of the functional brain networks only internal points of the Brillouin zone 

should be considered. Therefore we deal with the phase transitions without the loss of the point 

symmetry elements [14]. We show that in case of two-component order parameter the spatio 

distribution of the order parameter is determined by the one–dimensional sine-Gordon fractional 

differential equation. The change of the fractional dimension due to the fractal dimension of the 

structure changes the medium in which the order parameter moves. It could be shown that if the 

fractional dimension of the order parameter equation of motion changes from 2 to 1 the solution 

different from zero becomes identically zero. Thus our results discover the principles of a human brain 

functioning near the threshold of criticality. 

References 
[1] Eguiluz V M, Chialvo D R, Cecchi G A, Baliki M and Apkarian A V 2005 Scale-free brain functional 

networks Physical Review Letters 94 018102 

[2] Bullmore E and Sporns O 2009 Complex brain networks: graph theoretical analysis of structural and 

functional systems Nature Reviews Neuroscience 10 186–198 

[3] Gadjiev B 2013 Superstatistics for fractional systems Preprint arXiv:1305.0933 

[4] Anteneodo C and Plastino A R 1999 Maximum entropy approach to stretched exponential probability 

distributions Journal of Physics A: Mathematical and General 32 1089–1097 

[5] Cosma R S 2007 Maximum likehood estimation for q-exponential distributions Preprint arXiv: 

math/0701854 

[6] Fraiman D, Balenzuela P, Foss J and Chialvo D R 2009 Ising-like dynamics in large-scale functional 

brain networks Physical Review E 79 061922 

[7] Barrat A and Weigt M 2000 On the properties of small-world network models European Physical Journal 

B 13 547–560 

[8] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press) 

[9] Hasegawa H 2006 Nonextensive aspects of small-world networks Physica A: Statistical Mechanics and 

its Applications 365 383–401 

[10] Shafee F 2007 Lambert function and a new nonextensive form of entropy IMA J Applied Mathematics 

72 785–800 

[11] Tsallis C 2009 Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (New 

York: Springer) 

[12] Dotsenko Vik S 1995 Critical phenomena and quenched disorder Phys. Usp. 38 (5) 457–496 

[13] Gadjiev B R 2011 Phase transition in generalized inhomogeneous 'cubic' systems Journal of Physics: 

Conference Series 284 012026 

[14] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Critical phenomena in complex networks Rev. 

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012038 doi:10.1088/1742-6596/597/1/012038

8



 

 

 

 

 

 

Mod. Phys. 80 1275–1335 

[15] Zaslavsky G M and Tarasov V E 2007 Fractional dynamics of systems with long-range space interactions 

and temporal memory Physica A 383 291–308 

[16] Haken H 1996 Principles of Brain Functioning: Synergetic Approach to Brain Activity, Behavior, and 

Cognition (Berlin: Springer)  

[17] Nicolis G and Prigogine I 1989 Exploring Complexity: An Introduction (New York: W H Freeman and 

Company) 

[18] Kovalev O V 1965 Irreducible Representations of the Space Groups (New York: Gordon and Breach) 

[19] Gadjiev B 2009 Features of incommensurate phases in multiferroics Physica Status Solidi C 6 1321–1324 

[20] Tarasov V E 2011 Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, 

Fields and Media (Berlin: Springer, HEP)  

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012038 doi:10.1088/1742-6596/597/1/012038

9


