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Abstract. We present quantizations of functions (or distributions) on a measure space viewed
as a classical set. They are based on positive operator-valued measures. To illustrate the large
range of potentialities of the method, we develop examples where the classical sets are the group
SU(2), the (projective) Weyl-Heisenberg group, and the affine group. Applications to quantum
cosmology and to the quantization of constraints are outlined.

1. General framework for quantization

Quantization of a “classical” object X, such as a phase space in mechanics, can be formulated
as a linear map f — Ay from the space of C(X) of complex-valued functions f(z) on X to a
space A(H) of linear operators A in some complex Hilbert space H (we omit here the necessary
domain considerations). One further requires that

(i) the constant function f = 1 be mapped to the identity operator,

(ii) real functions be mapped to (essentially) self-adjoint or at least to symmetric operators Ay

in A(H).

This broad definition can be applied to specific physical problems by adding appropriate
structure to X and to C(X), such as measure, topology, manifold structure, closure under
algebraic operations, etc. Moreover, one is free to define which functions or operators are
observables, whose spectra have a physical meaning in terms of measurement.

Finally, given an appropriate structure, like a measure or a Poisson structure, one can define
an unambiguous classical limit f — f of quantum observables through X-labeled expectation
values of Ay defining a new function, f(z) (namely, “lower symbols”)

We describe in Section 2 a general quantization procedure based on (normalized) positive
operator-valued measures (POVM). We illustrate the method in Section 3 with the cases where
the classical set X has a group structure, like SU(2), the projective Weyl-Heisenberg group, and
the affine group. Section 4 is an application of the Weyl-Heisenberg integral quantization to
simple constraints in the complex plane, showing the difference between two approaches.
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2. Integral quantization with POVM
Integral quantization [1, 2, 3, 4, 5] is a generalization of the Berezin-Toeplitz-Klauder (or “anti-
Wick” or standard coherent state) quantization. It can be formulated as follows.

One starts from a measure space (X,B,v) (or (X,v) for short), where 9B is the o-algebra
of v-measurable subsets, a separable Hilbert space H, and an X-labelled family of positive
semi-definite and unit trace operators, i.e. density operators, on H,

Xoz—=plx)e LH), plx)>0, tr(p(x)) =1, (1)

resolving the identity I on H,

/ p(z)dv(z) =1, in a weak sense. (2)
X

One then equips X with a suitable topology, so the normalized positive operator-valued measure
(POVM) m, on the corresponding o-algebra B(X) of Borel sets is defined through the following
map of
B(X)>2A—=m,(A) = / p(x)dv(z) (3)
A
into the convex cone £*(H) of positive bounded operators on H. As a result, the resolution of
the identity produces the X-labeled family of probability distributions

X 3 @0, & = pag () = tr (p(20) p(2)) (4)

on (X,v). The expression p,,(x) measures the degree of localization of x w.r.t. zp, in a sense
determined by the family p(x), and vice versa due to the symmetry pg,(z) = pz(xo) on the
measure space (X,v). In the particular case where p(z) is rank-one projector operator (i.e.
“pure coherent state”),

p(z) = |z) (=, (z]z) =1, (5)
one has
Pao () = | (zo ) |*, (6)
From the fact that any density operator p is Hilbert-Schmidt, with norm ||p|| = /trpp!f =
\V/trp2, one can introduce the associated distance
dus(z,2') = ||p(x) = p(z')| = Vtx(p(x) — p(a"))?. (7)

This object forces any pair of points in X to be finitely separated since we have

dus(2,2') = /ix ((p(@)2 + (0(@))? = 2o(@)p(@") < VBT —te(p(@)p(@) < V2.  (8)

The integral POVM quantization is the linear map

Fro = [ plo) fa) dvia). ©)

This should be understood in terms of the sesquilinear form

BMMM=AWW@MM@®M7 (10)



30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012037 doi:10.1088/1742-6596/597/1/012037

defined on a dense subspace of H. There is a caveat: if f is real and at least semi-bounded,
Friedrich extension of B univocally defines a self-adjoint operator. However, if f is not semi-
bounded, there is no natural choice of a self-adjoint operator associated with By. We must give
more details about the Hilbert space and operator domains, see for instance [6].
Self-adjointness is essential in the Copenhagen-Dirac-von Neumann interpretation of quantum
physics, since the spectral theorem for bounded or unbounded self-adjoint operators is the key for
(sharp) quantum measurement. Hence, if Ay is self-adjoint, its spectrum, which is determined
by its projector-valued (PV) spectral measure Ey corresponding to the integral representation

AfZ/R)\dEf()\), (11)

might have a remote connection with its classical spectrum {f(z), x € X} appearing in the
integral representation (9). While the POVM used for quantization - and built from a family
p(x) resolving the identity with respect to the fixed measure v - should be considered as a frame
to analyse such functions on X, the PV measure in the integral representation (11) is proper
to the quantum observable and to functions of it. However, there are simple examples (see
below for position and momentum in the Weyl-Heisenberg case) where classical and quantum
spectra can be considered as identical regardless of the difference between their respective PV
and POVM. Moreover, the frame = — p(x) itself may be associated to a specific system to be
quantized. A nice pedagogical example (the seastar) is presented in Chap. 11 of [2].

2.1. Semi-classical aspects
Some of the properties of the operator Ay can be grasped by examining the lower (Lieb) or
covariant (Berezin) symbol, which in the present generalization reads as

Af > fl@) = tr(p(a) Ap). (12)

This function could be viewed as a sort of Wigner function [1]. However, it has a real probabilistic
content, since it is the local averaging of the classical function f with respect to the probability
distribution tr(p(z)p(z’))

f(z) = f(x) Z/Xf(w’) tr(p(z)p(2’)) dv(z'). (13)

The Bargmann-Segal-like map f — f above is in general a regularization of the function f.
Indeed, depending on the topology on X, the original f can be singular. It can be even a
distribution (see below).

2.2. Quantum measurement: sharp or unsharp?

In the quantum context for which Ay is a self-adjoint operator viewed as an observable for a
given system, with spectral decomposition (11), and given a density operator p,, = >, ¢; |¢i) (¢4
describing the mixed state of an ensemble, one interprets the quantity

tr (pmd By (V) (14)

d la Copenhagen-Dirac-von Neumann, that is, as the probability of measuring the spectral value
A. Now, the expectation value of the measurement of the observable Ay when the system is in
the state p,, is given by the alternative expressions

0 (pmAy) = /R Mr(dEf(\)  (PV, sharp) (15)

= /X f(z)tr(pmp(z)) dv(x) (POVM, unsharp) . (16)
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The latter is the average of the original f with respect to the probability density p,,(x) :=
tr(pmp(z)). Hence, it might be viewed as an unsharp measurement, possibly through some
marginal integration [7, 8]. Note that when the p,, is chosen as the element p,, = p(zg) of the
family of density operators (1), the measurement (15) has the averaging interpretation given by
(13).

3. Covariant integral quantization with UIR of a group

3.1. The material

Let G be a Lie group with left Haar measure du(g), and let g — U(g) be a unitary irreducible

representation (UIR) of G in a Hilbert space H. Consider a bounded operator M on H such
that the operator

R = / M(g)du(g). Ml(g) := U(g)MUT(g). (17)
G

is defined in a weak sense. From the left invariance of du(g), R commutes with all operators
U(g), g € G, and so from Schur’s Lemma, R = ¢yl with

e = / tr (po M(g)) dpa(g) (18)
G

where the unit trace positive operator pgp is chosen in order to make the integral convergent.
The resolution of the identity follows:

/G M(g)du(g) = I, dulg) = du(g)/em. (19)

For a square-integrable UIR U for which p is an “admissible” density operator, c(n) =
Jodu(g) [tr(pU(g))|* < oo, the resolution of the identity is then obeyed by the family

p(g) =U(g)pU'(g) (20)

This allows for a covariant integral quantization of complex-valued functions on the group

fAp= /G p(9) f(g)dv(g), (21)
which is covariant in the sense that
U(9)AsUM(g) = Au(g)s - (22)
where g + U(g) is the regular representation of G for f € L*(G,du(g))

U(9) Mg = flg™"d). (23)
The semiclassical portrait and the corresponding classical limit are given via the lower symbol

F(g) = /G tr(p(9) p(9)) £(g' v () - (24)

a generalization of the Berezin transform on G.
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3.2. Illustration with SU(2)
A proper rotation in space R(w,n) : ¥ — r/, where n a unit vector 7 and w a rotation angle
0 < w < 2w, can be defined as

—

=

M =R(w,A) - F=7Af+coswn x (Fx7)+sinw (A X 7). (25)

In scalar-vector quaternionic form,

(0.,77) = £(0,¢, € := (cos 5 sim S ) |

with ¢ = (qo,¢) € H and

qq = (00q) — 74", a0T+ q0d +Tx ).

The (quaternionic) conjugate of ¢ = (qo,q) is ¢ = (qo, —q), the squared norm is ||q||?> = ¢g, and
the inverse of a nonzero quaternion is ¢~ = ¢/||¢||>. Unit quaternions, i.e., quaternions with
norm 1, form the multiplicative subgroup isomorphic to SU(2).
The correspondence between the canonical basis of H ~ R*, (eg = 1, ey, €2, €3), and the Pauli
matrices is
€0 < 00, €q < (=1 io,, a=1,2,3. (26)

Unit quaternions constitute the three-sphere S®. In hypersherical coordinates («, 8, ¢) of S one
has

S¥s¢= llgll (cosa,sinan), 0<a,0<m,0<¢<2m,

¢ =sin’a sinfdadfde, / £ =2n2.
SU(2)

The unit ball B in R? parametrizes the set of 2 x 2 complex density matrices p. For general 2 x 2
complex density matrices, ||@|| < 1, this becomes

1 1 1 .
p=5(+ad-3)=(1-i(0,7)=(1—ir)=py, ri = (—1)"a;. (27)
If |@]| = 1, i.e. @ € S? (“Bloch sphere” in this context), with spherical coordinates (6, ¢), then
p is the pure state p = |0, ¢) (0, ¢| . For £ € SU(2), one defines the family of density matrices
labeled by &:

p(€) = €9 = (1 - irE). (28)

It is then straightforward to prove the resolution of the identity

/ p(§) 2 = I, (29)
SU(2) Q0

which allows us to quantize functions on SU(2) or S? along the linear map

1€ 4= [ (€09 5 eMEO). (30)

SU(2)

The symbols corresponding to the Pauli matrices can be obtained via the Hopf map S — S2,
where the Hopf fibration is understood in terms of the transitive action of rotations on S2.
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Let us fix the North pole unit vector (0, l%) € 5% Then y = ¢ (0, 12:) € is the image of the
rotation by the unit quaternion &. The components of y correspond to the operators

as
AXl = 3017 sz = _30'27 AX3 =

as as

—o03. 31
Lp (31)

With the redefinitions 2w = 3, 2 — 91 =7+ §, ¥1 + 2 — 27 = —a + F, the algebra of Euler

angle operators becomes

[Ag, Ay] = 1Ay, [Ay, Ag] =iAn, [Aa, A,] =iAg, (32)

i.e., the Lie algebra of SU(2), as we also had with the quantization of the Hopf map. The Euler
parametrization of SU(2) seems to be privileged from an algebraic point of view.

3.83. Weyl-Heisenberg covariant integral quantization

In the absence of square-integrability over G, there exists a definition of square-integrable
covariant coherent states with respect to a left coset manifold X = G/H, with H a closed
subgroup of G, equipped with a quasi-invariant measure v [2]. For a global Borel section
o0 : X — G of the group, let v, be the unique quasi-invariant measure defined by

dvy(x) = Mo (x), z)dv(x), (33)

where \(g,z)dv(x) = dv(g~'z), (Vg € G). Let U be a UIR which is square integrable mod(H)
and p mod(H) an admissible density operator, i.e. ¢, := [y tr(pps(x)) dvs(z) < co. With
po(z) = U(o(x))pU(a(x))T, we have the resolution of the identity and the resulting quantization

fs A = ;/X (@) po (@) dvg (z) = I (34)

In the case of the Weyl-Heisenberg group, X is the coset space Ggw /(phase subgroup) ~ C,
while the measure is the Lebesgue measure in the complex plane d?z = dz A dz/2i. The triplet
{a, at, 1 } generates the Weyl-Heisenberg algebra characterized by the canonical commutation
rule [a, aT] = I . To each z € C corresponds the (unitary) displacement operator D(z), encoding
the CCR

C>zm D(2) = e % D(2)D(¢) = ez ~#)D(z + 7).

Let @(z) be a function on the complex plane defining a bounded operator M := [, D(z) w(z)djr—z
and such that w(0) = 1. The family of displaced operators M(z) := D(z)MD(z)' resolves the
identity

/ M) L2 (35)
C

™
and the resulting quantization map is given by
d?z ;
[ Ay = Cf(z) M(2) —, Afi—z) = D(20)Ap)D(20)" (36)

™

(z+2) andpz%(z—z) , one has

[

2

For ¢ = %5

AgAp — ApAg =ifa,at] =1, (37)
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i.e., the canonical commutation rule is preserved by the set of quantizations paQrametrized by
functions w(z). In particular, the Cahill-Glauber function [9] ws(z) = e*I7/2 for s = 0
corresponds to the Wigner-Weyl integral quantization, while the cases s = —1,1 correspond,

respectively, to the CS (anti-normal) and normal quantization (s = 1 should be understood in
an asymptotic sense). Only for s < —1 is the operator M = f(c D(z) w(z)% a density operator,
which gives rise to a POVM.

The choice of weight function w(z) determines different orderings. For the simplest one

involving the classical g and p, we have
i
Agp = Agdp — 5 + 02|, _o — 02|, — (9sw],_0)* + (8:w],_0)* - (38)

For instance, with w(z) = (cz + 1)63“2'2, ¢, s € C, Res < 1, we have Ay, = AzA, — % + 2,
and putting ¢ = €'™/*/4/2 leads to the so-called zp-quantization Agp = AgAp. For w chosen real
and even, one has A, = a, Am = A}(z). Ouly for real even w(z) one arrives at the correct
energy spectrum of the harmonic oscillator. In general,

1
App = ala+ 5 0.0:w| _g+a d,w|,_y—a dsw|,_, - (39)

3.4. Affine integral quantization
3.4.1. The material As the Wigner-Weyl integral quantization, based on the Weyl-Heisenberg
group, is natural for a classical motion on the line, affine or wavelet quantization, based on the
affine group, is natural for a classical motion on the half-line.

Set X is the upper half-plane II; := {(¢,p)|p € R, ¢ > 0} equipped with measure dgdp.
It is the phase space for the motion on the half-line ¢ > 0. Equipped with the multiplication
(¢,p)(q0,0) = (490,P0/q +p), ¢ € RL, p € R, X is viewed as the affine group Aff; (R) of the
real line. The affine group Aff, (R) has two non-equivalent UIR, U.. Both are square integrable.
The UIR Uy = U is carried by the Hilbert space H = L2(R>“Jr7 dz) in the form

Ula,p)(x) = (/) /a)w(z/q). (40)

The unit-norm state i) € L2(R1,da}) N Lz(Rl,dx/m) (“fiducial vector”) produces all wavelets,
or equivalently, CS defined as |¢,p) = U(q,p)[v):

p =) (| = Ulg,p)) MU' (q,p) = pla.p). (41)

This yields the crucial resolution of the identity

dgd o0
/ W apl =1, o= / de () 2 /227 (42)
11 0

I 27['6_1

The covariant integral that arises from the resolution of the identity is

dgdp
A = 4
f /H+ 27Tcilf(q,p)\q?p><qr,p\, (43)

and U(g)A;U(g) = Augrr> U@)Hg) = f(g7'g"). Quantization is canonical (up to a
multiplicative constant) for ¢ and p:

Ap=P=—id)0x, Ay = (cg1/c1)Q°, (44)
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where Qf(x) = xf(x).
The quantization of the kinetic energy yields

Ap=P+KQ?, K=K@U)= /Ooo udu (¢’ (u))?/c_1 . (45)

Thus affine integral quantization forbids a quantum free particle moving on the positive line
to reach the origin. Furthermore, the operator P? = —d?/dz? in L*(R%,dz) is not essentially
self-adjoint, whereas the above regularized operator, defined on the domain of smooth compactly
supported functions, is essentially self-adjoint for K > 3/4. Therefore, quantum dynamics of
the free motion is consistent.

3.4.2. Affine Integral Quantization for FLRW Quantum Cosmology FLRW models filled with
a barotropic fluid with equation of state p = wp and resolving the Hamiltonian constraint lead
to a model of a singular universe, or equivalently, of a particle moving on the half-line (0, c0)
with reduced variable Hamiltonian.

h(g,p) = a(w)p® +6k¢® @, ¢>0, {gp}=1, (46)

with k = ([ dw)?/3k, a(w) = 3(1 —w)?/32 and B(w) = 2(3w +1)/(3(1 — w)). The constant k is
0, —1 or 1 (in suitable units of inverse area) depending on whether the universe is flat, open or
closed.

Assume a closed universe with radiation content : w = 1/3 and k = +1. Affine quantization
on R* with a fiducial vector like ¥(x) o exp(—(a(v)z + B(v)/x), with parameter v > 0, yields
the quantum Hamiltonian [10]

1 _, diK(v) 1

Ap=H=_—pP*+-2" 14
h ' T T gr T

2
P2, (47)
C-1

where ap is a Planck area. For K(v) > 3/4, wavelet quantization removes the quantum
singularity and then the quantum evolution is well-defined, contrary to what happens in
canonical quantization

The quantum states and their dynamics have a phase space representation through lower
symbols. For a state |¢) :

®(q,p) = (a,pl0)/V2r. (48)

The associated probability distribution on phase space is

0s(a0) = 5 lla.I0) . (19)

With (energy) eigenstates of some quantum Hamiltonian H at our disposal, we can compute
the time evolution

1 .
05(a:p:1) = 5 —I{a:ple HE 5y (50)

for any state ¢.

In general the lower symbol f(q,p) differs from its classical counterpart f(g,p): it is a
quantum-corrected effective observable. Thus, computing the lower symbol of the Hamiltonian
leads to the semiclassical Friedmann equation for the scale factor a(t):

. 2 2
a ke 2 9 o v 1 8rG
) 1— w2l =, 1
(a> T Tearl Sl sye = gah (51)
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Note that the repulsive potential depends explicitly on the volume. This excludes non-compact
universes from quantum modelling.

Finally, the singularity resolution is confirmed: as the singularity is approached (a — 0), the
repulsive potential grows faster (~ a~%) than the density of the fluid (~ a=3(1*")) and so at
some point the two terms become equal and the contraction is brought to a halt.

The form of the repulsive potential does not depend on the state of fluid filling the universe:
the singularity is avoided thanks to the quantum geometry.

4. Integral quantization of constraints

4.1. Two approaches

First approach. On a general level, suppose that (X, v) is a smooth n-dimensional manifold on
which is defined the space D’(X) of distributions as the topological dual of compactly supported
n-forms on X [12]. Some of these distributions, e.g. d(u(z)) = 0 o u(x), express geometrical
constraints, e.g. u(z) = 0. Given a POVM integral quantization determined by a family of
density operators x — p(x) resolving the identity in some Hilbert space H, one extends the map
[+ Ay to these objects. We thus obtain a quantum version, Aso, of these constraints.

Second approach. Another viewpoint in the quantization of constraints, such as the above
u(z) = 0, is that of Dirac’s [13]. It consists of determining the kernel of the operator A,, which
in our case is obtained from the integral quantization map u — A,,.

Lower symbols. One completes both approaches with the semi-classical analysis provided by
their respective lower symbols § o u and % = 0. In the sequel, illustrative examples are provided
by the complex plane with Lebesgue measure (X,v) = (C,dz /7).

4.2. Example of constraints in the plane

In this example, (X,v) = (C,d?z/7), and we adopt the integral quantization based on the Weyl-
Heisenberg group as it was described in Subsection 3.3. For instance, we can choose as weight
functions the Cahill-Glauber function ws(z) = es1*/2 for s < —1. This choice yields the family
of density operators which are Weyl-Heisenberg displaced thermal states resolving the identity,

o0

s+1

pe(2) = D(2)pD (), D(z) = e 70 pyi=(1—1)> t"|n)(n|, 0 <t:= <1 (52)
n=0
22’
[ =1 (53)
C T

The density operator p; is viewed as a thermal state when ¢ = e /KT Zero temperature, or
equivalently ¢ = 0, corresponds to the projector pp = |0)(0| and the corresponding py(z) reduces
to the rank-one CS projector |z)(z|. Note that the Weyl-Wigner integral quantization , and the
related Wigner transform, correspond to the value t = —1 (i.e., s = 0 or T' = ihw/7 is purely
imaginary). For this particular case in which p_; loses its probabilistic meaning, p_; = 2P,
where P =" (—1)"|n)(n| is the parity operator.

Let f(z) = 0 be an equation defining some subset of the complex plane, like points, curves,
etc. The first approach towards quantization yields the operator

22’
o frs Asoy = [ (/) p(x) L2 (54)

™

whose lower symbol is § o f(z) = f(c 0(f () (2] pe(2) |2) 2

™
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The constraint can then be understood in terms of the kernel of the operator. In the Dirac
quantization procedure we directly quantize the function f (2)

2
fHAf—/f p() 2, (55)

We then analyze ker A; through the zeros of the lower symbol f(z = [ f(&') tr(pe(2)pe(2))) %.
Both methods are obviously not mathematically equivalent, except for a few cases. They are
possibly physically equivalent, i.e. indistinguishable in terms of measurement.
Here are two simple examples. they are handled with CS, po(z) = |2)(z|, for the sake of

simplicity. A more thorough investigation can be found in [11].

4.2.1. The point: f(z) =z — 29 =0 Here we study the constraint f(z) = z — zg = 0. In the
first approach, we have

d2z

Ansog = [ 78z = 20) [2) el - = Ja0) o] (50
The lower symbol is purely Gaussian and concentrates about the point zg.

56 f(2) = (2| z0)|* = e FF2l | (57)

In the second approach one has

2
A= [ =)l (6 = el (58)

where a is the lowering operator
alz) =z|z) . (59)

Therefore, |v) € ker Ay is such that [v) = X|z9) , A € C. The lower symbol of Ay is identical to
the original f

f(2)=2—2=f(2). (60)

which means that classical and semi-classical constraints are the same. Therefore the two
methods already differ on this elementary example since the first one gives a smooth Gaussian
portrait of the point zg.

Note that the lower symbol of the projector P,, = |z0) (20| corresponding to the element of
the kernel is the same as (57)

P, =e 1l (61)
It is only at this level that the two methods yield similar results.

4.2.2. The half-line f(z) = P(v,J) =~ —70 =0 The constraint is given by f (z) = P(J,7) =
v — 9 = 0. The first approach gives

d2
Arsof = /TF5 (v —70) |2) (2| —
(n-{—n +1) 1 )
— Z ‘67’1 en‘ - (TL n)’YO
vnln/ 2
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Its lower symbol is given by

8o f(z) = / exp |~ [re — '] 1 ar
0
{ —r2sin?(y—70) erfc(r COS(’}/ ’YO)) (62)

The second approach yields

r (Lgn + 1) 1

nln'! n—

dz )
AfZ/(v—%)!z><z\7r:7rI+z Z
n,n' >0

n #n'

' ’en> <€n” — Yol

= Ay =l

where A7 is the angle operator. In this case the spectrum of operator is continuous with support
n [0, 27], so the kernel is not properly defined in the Hilbert space, except in a distributional
sense. The lower symbol of A; is the Fourier series

(# + 1) P
Ap= (Il A1lTa) —o=m+ie? Yy —— ot
= In/!
—w—22d Sm(”—fyo, (63)
where the function dy(r) is given by:
> T(L+1)
dr:e_rr‘IQiF( +1; —|—1r). 64

It can be shown that this positive function is bounded by 1.
For large J this lower symbol tends to the Fourier series of the 2m-periodic angle function
J(y) =~ for v € [0, 27):

4 .
(J,y] Az|J,y) = — 2 25 sin gy . (65)

Such a behavior is understood in terms of the classical limit of these quantum objects. Indeed,
by restoring physical dimensions to our formulas, we know that the quantity |z|?> = J should
appear divided by the Planck constant h. Hence, the limit J — oo in our previous expressions
can also be considered as the classical limit 7z — 0.

5. Conclusion
The main idea put forward is a map between classical observables, functions on a set, and
quantum observables, operators on a Hilbert space. In general this is not well-defined, because
of the appearance of unbounded operators, domain issues, etc. It is possible to bypass such
subtleties by working with the lower symbols of operators, which live in the classical setting,
but carry some information from the noncommutative and probabilistic quantum setting.
Besides the freedom allowed by integral quantization, the advantages of the method with
regard to other quantization procedures are manifold:
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(i) Only a minimal amount of restrictions have to be imposed on the classical objects
being quantized, which allows us to consider the quantization of more general objects, such
as distributions.

(ii) Once a choice of a (positive) operator-valued measure has been made, which must be
consistent with experiment, there is no more ambiguity (no ordering problem). To each classical
object corresponds one and only one quantum object.

(iii) The method produces in essence a regularizing effect.

(iv) The method, through POVM choices, offers the possibility of keeping a full probabilistic
content. In particular, the Weyl-Wigner integral quantization is not defined by a POVM.
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