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Abstract. We examine auxiliary functions which are related to certain second order nonlinear
differential equations with 2 and 3 singular values. The auxiliary functions satisfy first
order linear differential equations. It is shown that after imposing suitable conditions on the
coefficients of the linear equations and on the form of the auxiliary functions one can reduce
the nonlinear differential equations to the (modified) third and fifth Painlevé equations and the
fourth Painlevé equation.

1. Introduction

The singularity structure of a given nonlinear differential equation is in general very complicated.
Fixed singularities occur at points where the equation itself is singular in some sense. The
location of the singularities may also depend on the initial conditions and such singularities are
called movable. The coefficients of the equation are not necessarily singular at such points. It is
known from the theory of ordinary differential equations [9] that linear equations do not have
movable singularities. Nonlinear equations in general may have movable poles, algebraic branch
points, essential singularities and others (see [9] for numerous examples of possible singularities).

Classes of second-order rational ordinary differential equations, admitting certain families of
formal algebraic series solutions, is considered in [1, 2, 3, 10]. For all solutions of these equations,
it is shown that any movable singularity that can be reached by analytic continuation along a
finite-length curve is an algebraic branch point (or, in particular cases, a pole). As it is shown in
[1, 3], this yields in particular the known fact that the only movable singularities of solutions of
the Painlevé equations (PI)—(PV I) are poles for generic values of parameters. This is known as
the Painlevé property. In the technical part of the proof certain auxiliary functions with certain
properties appear and play an important role.

Solutions of the Painlevé equations are often referred to as the Painlevé transcendents or
nonlinear special functions and have numerous and significant applications in mathematics and
mathematical physics. The Painlevé equations are irreducible and satisfy second order nonlinear
differential equations. The third, fourth and fifth Painlevé equations are given respectively by
equations (10), (13), (15). There exist also modified versions of the third and fifth Painlevé
equations (e.g., (6)) which are related to the original ones by a change of variables. For more
information on the Painlevé equations the reader is referred to the book [5].

There are several proofs of the meromophic nature of the Painleveé equations (see, for
instance, [8, 7, 6, 5, 10] and [1, 3] with further references therein). In [1, 2, 3, 10] the proof
of the fact that any movable singularity that can be reached by analytic continuation along a
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rectifiable curve is an algebraic branch point relies on the Cauchy theorem for certain systems
of differential equations in the complex domain and the existence of certain auxiliary functions
(which are not unique) which allow constructing such systems and which remain bounded as
the singularities are approached. These functions satisfy first-order linear ODEs with some
potentially singular terms that can be removed. Each singular value of the equation should be
treated separately and, hence, one needs to consider several bounded functions. Note that the
study of similar auxiliary functions for the Painlevé equations was also done in [4] (and in the
references therein).

The construction of auxiliary functions in [4, 3, 10] may look a bit artificial and therefore, in
this paper we are interested to understand the construction of auxiliary functions for the Painlevé
type equations in general. We consider several second-order rational ordinary differential
equations of the form (3), (7), (11) with 2 singular values w = 0, ∞ and equations (14), (16)
with 3 singular values w = 0, 1, ∞. In each case we analyse the auxiliary functions

V (z) = E(z, w)w′2 + F (z, w)w′ +G(z, w) (1)

which satisfy the first order linear equations of the form

V ′ = P (z, w)V +Q(z, w)w′ +R(z, w) (2)

and which are related to the nonlinear differential equations for w(z). We show that under
suitable conditions on functions E, F, G, P, Q, R the nonlinear equations are reduced to the
Painlevé equations. The most important conditions on the functions are that they are rational
and P, Q and R are holomorphic at singular values of the nonlinear equation. We get the
(modified) third and fifth Painlevé equations and the fourth Painlevé equation. By a similar
argument as in Lemma 4.3 [10] one immediately gets that under those conditions the function
V (z) remains bounded as w(z) stays away from singular values and thus the results of the present
paper can be used to improve the proof of the Painlevé property for the Painlevé equation [10]
if combined with the methods in [1, 2, 3]. Moreover, we show that there is always a freedom in
the choice of P for the Painlevé equations and discuss several examples.

2. Main results

2.1. The modified third Painlevé equation
Let w(z) be defined by the equation

w′′ =
w′2

w
+

3
∑

n=−1

an(z)w
n, (3)

where ′ = d/dz and an(z) are analytic functions of z. Singular values of this equation are w = 0
and w = ∞. Take

E(z, w) =
1

w2
(4)

in (1). The choice of E is unique if we assume that the function V satisfies equation (2).
Assume that the function G satisfying

∂G

∂w
= − 2

w2

3
∑

n=−1

an(z)w
n

is rational in w. This yields

G(z, w) = g(z) +
a−1(z)

w2
+

2a0(z)

w
− 2a2(z)w − a3(z)w

2 (5)
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and a1(z) = 0 (to avoid the logarithmic term). Here g(z) is an arbitrary function.
By a simple calculation the function P satisfies

P = w

(

F + w
∂F

∂w

)

.

Since we want this function to be analytic at singular values w(z) = 0 and w(z) = ∞ and also
be non-constant, there is a freedom of the choice. The function F should be rational in w, so
one can assume that

P =
p1(z)

w + 1
+

p2(z)

(w + 1)2
.

The functions p1(z) 6= 0 and p2(z) 6= 0 are to be determined from other conditions. By solving
a differential equation

w

(

F + w
∂F

∂w

)

=
p1(z)

w + 1
+

p2(z)

(w + 1)2

for F (z, w) we get

F =
f(z)− p1(z)/(w + 1) + log(w/(w + 1))(p1 + p2)

w
.

The function F is rational if the condition p2(z) = −p1(z) is imposed and it is given by

F (z, w) =
p2(z)

w(w + 1)
+

f(z)

w
,

where f(z) is an arbitrary function. The coefficient Q in the differential equation (2) is given by

Q = wF 2 − w2FFw + Fz,

where Fw = ∂F/∂w and Fz = ∂F/∂z. From the proof in [3] we observe that the functions P, Q
and R in (2) should be holomorphic at w = 0 and w = ∞ and the function Q has a second order
zero at w = ∞. Observe that with our choice of P as above, the function P is automatically
holomorphic at w = 0 and w = ∞. Other conditions give the following system of differential
equations:

p′2(z) + f ′(z) = 0, f ′(z) = 0,

p2(z)a−1(z) + a−1(z)f(z) + a′
−1(z) = 0,

p2(z)a0(z) + a0(z)f(z) + 2a′0(z) = 0,

a3(z)f(z)− a′3(z) = 0, a2(z)f(z)− 2a′2(z) = 0,

which is solved by

f(z) = C1, p2(z) = C2, a−1(z) = δe(−C2−C1)z,

a0(z) = βe(−C2−C1)z/2, a3(z) = γeC1z, a2 = αeC1z/2,

where C1 and C2 are arbitrary constants. Finally, taking C1 = 2a and C2 − C1 = 2b, we get
that the equation (3) has the following form:

w′′ =
w′2

w
+ γe2azw3 + αeazw2 + βebz +

δe2bz

w
,
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where a, b, α, β, γ, δ are arbitrary constants. In particular, if C1 = 0, C2 = 2 (a = 0, b = 1)
we get the modified third Painlevé equation given by

w′′ =
w′2

w
+ αw2 + β + e2z

(

γw3 +
δ

w

)

. (6)

For the modified third Painlevé equation we get the auxiliary function given by

V (z) =
w′2

w
− 2w′

w(w + 1)
− γw2 − 2αw +

2βez

w
+

δe2z

w2
+ g(z).

We can summarize the results in this section as follows.

Theorem 2.1 Assume the following conditions for the coefficients of (1) and (2):

(i) the function E satisfies (4);

(ii) the function G satisfying

∂G

∂w
= − 2

w2

3
∑

n=−1

an(z)w
n

is rational in w and is given by (5);

(iii) the function F satisfying

w

(

F + w
∂F

∂w

)

= P :=
g1(z)

w + 1
+

g2(z)

(w + 1)2

is rational in w, where g1(z) and g2(z) are functions to be determined from other conditions;

(iv) the functions P, Q and R in (2) are holomorphic at w = 0 and w = ∞;

(v) the function Q has a second order zero at w = ∞.

Then equation (3) has the following form:

w′′ =
w′2

w
+ γe2azw3 + αeazw2 + βebz +

δe2bz

w
,

where a, b, α, β, γ, δ are arbitrary constants.

We remark that the function P should have at least a second order pole at w = −1 and by
taking more terms in the expression of P we can get a similar statement. If the function P is
either constant or has the first order pole, then the function F is not rational. We also note
that we can choose another function P with a pole of second order at w = 1 and get the same
modified Painlevé equation. Moreover, this function is equal (up to the arbitrary function g(z))
to the function U in [7].

2.2. The third Painlevé equation
Let the function w(z) satisfy the equation

w′′ =
w′2

w
− w′

z
+

3
∑

n=−1

an(z)w
n, (7)

where ′ = d/dz and an(z) are analytic functions of z as before. Singular values of this equation
are w = 0 and w = ∞. We take

E(z, w) =
z2

w2
(8)

in (1).
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Theorem 2.2 Assume condition (8) and the following conditions for the coefficients of (1) and
(2):

(i) the function G satisfying

∂G

∂w
= −2z2

w2

3
∑

n=−1

an(z)w
n

is rational in w;

(ii) the function F satisfying

w

z2

(

F + w
∂F

∂w

)

= P :=
p1(z)

w − 1
+

p2(z)

(w − 1)2

with p1(z) 6= 0, p2(z) 6= 0 is rational in w;

(iii) the functions P, Q and R in (2) are holomorphic at w = 0 and w = ∞;

(iv) the function Q has a second order zero at w = ∞.

Then equation (7) has the following form:

w′′ =
w′2

w
− w′

z
+ γz2aw3 + αza−1w2 + βzb +

δz2b+2

w
, (9)

where a, b, α, β, γ, δ are arbitrary constants.

Proof 1 Condition 1 implies a1(z) = 0 since

G(z, w) = g(z) +
a−1(z)z

2

w2
+

2z2a0
w

− 2z2a1(z)logw − 2z2a2(z)w − z2a3(z)w
2.

In this case the function G does not have logarithmic terms. As in the previous section, we could
choose P 6= 0 equal to any function which is holomorphic at w = 0 and w = ∞ such that the
differential equation for F has a rational solution. If P (z, w) = p1(z)/(w − 1), then F has a
logarithmic term if p1(z) 6= 0. Hence, if we choose P as in the theorem, then

F (z, w) =
f(z) + z2((p1(z)− p2(z))log((w − 1)/w)− p2(z)/(w − 1))

w
.

Condition 2 implies p1(z) = p2(z) and the function

F (z, w) =
f(z)

w
− z2p1(z)

w(w − 1)
,

where f(z), p1(z) are the functions to be determined from other conditions. We have already
chosen the function P such that it is automatically holomorphic at w = 0 and w = ∞.
Substituting into

Q =
z2w2Fz − w4FFw − w3F 2 − zw2F

z2w2

and to the expression for the function R, which is cumbersome so we omit it, we analyse other
conditions in the theorem on Q and R. Their holomorphicity at w = 0 and w = ∞ gives the
following system of differential equations:

z2p1(z)− f(z) + z3p′1(z) + zf ′(z) = 0,

zf ′(z)− f(z) = 0, 2z2a′2(z)− a2(z)f(z) + 4za2(z) = 0,

2za−1(z) + z2p1(z)a−1(z) + a−1(z)f(z) + z2a′
−1(z),

4za0(z) + z2p1(z)a0(z) + a0(z)f(z) + 2z2a′0(z) = 0,

z2a′3(z)− a3(z)f(z) + 2za3(z) = 0,
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which is solved by

f(z) = az, p1(z) = b/z, a−1(z) = δz−2−a−b,

a0(z) = βz−2−a/2−b/2, a3(z) = γza−2, a2 = αza/2−2.

This yields the statement of the theorem after renaming the constants a → 2(1 + a), b →
−2(3 + a + b). We remark that one can take more terms in the expression of P and get a
similar statement.

In particular, if b = −1, a = 0 in (9), we get the third Painlevé equation given by

w′′ =
w′2

w
− w′

z
+

1

z

(

αw2 + β
)

+ γw3 +
δ

w
, (10)

where α, β, γ, δ are arbitrary complex parameters. In this case the auxiliary function V (z) is
given by

V (z) =
z2w′2

w2
+

2z(w + 1)w′

w(w − 1)
− γz2w2 − 2αzw +

2βz

w
+

δz2

w2
+ g(z).

One can immediately see that the function coincides with the function U in [10] up to the
arbitrary function g(z).

2.3. The fourth Painlevé equation
Assume that the function w(z) satisfies an equation of the form

w′′ =
w′2

2w
+

3
∑

n=−1

an(z)w
n (11)

with singular values w = 0 and w = ∞.

Theorem 2.3 Let

E(z, w) =
1

w

in (1). We impose the following conditions on the coefficients of (1) and (2):

(i) the function G satisfying

∂G

∂w
= − 2

w

3
∑

n=−1

an(z)w
n

is rational in w;

(ii) the function F satisfying

1

2
F + w

∂F

∂w
= P :=

p1(z)

w + 1
+

p2(z)

(w + 1)2

is rational in w with p1(z) 6= 0 and p2(z) 6= 0;

(iii) the functions P, Q and R are holomorphic at w = 0 and w = ∞;

(iv) the function Q has a second order zero at w = ∞.

Then equation (11) has the following form:

w′′ =
w′2

2w
+ a3w

3 +

(

a2 −
4a3cz

3

)

w2 +
1

6
(cz(2a3cz − 3a2)− 12α)w +

β

w
, (12)

where a2, a3 and c are arbitrary constants.
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Proof 2 Condition 1 implies a0(z) = 0 since G(z, w) = g(z) + 2a−1(z)/w − 2a0(z)logw −
2a1(z)w − a2(z)w

2 − 2a3(z)w
3/3. We further get p2(z) = −2p1(z) since

F (z, w) =
f(z) + arctg

√
w(2p1(z) + p2(z)) + p2(z)

√
w/(w + 1)√

w
.

Thus, the function

F (z, w) = −2p1(z)

w + 1
,

where p1(z) is to be determined from other conditions given by

p′1(z) = 0, a′
−1(z) = 0, a′3(z) = 0

4p1(z)a3(z) + 3a′2(z) = 0, 2a′1(z) + p1(z)a2(z) = 0.

Solving for coefficients ai(z) and p1(z) we get the statement of the theorem.

In particular, if a3 = 3/2, a2 = 0, c = −2 in (12) we get the fourth Painlevé equation given
by

w′′ =
w′2

2w
+

3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
, (13)

where α and β are arbitrary complex parameters. The auxiliary function is given by

V (z) =
w′2

w
+

4w′

w + 1
+

2β

w
− 4(z2 − α)w − 4zw2 − w3 + g(z).

One can analise the auxiliary functions in [10] and [5] to see that up to a choice of P and a
constant functions our construction gives essentially the same auxiliary functions.

2.4. The fifth Painlevé equation
Assume that the function w(z) satisfies

w′′ =

(

1

2w
+

1

w − 1

)

w′2 − w′

z
+

3
∑

n=−1

an(z)w
n +

b(z)

w − 1
(14)

with singular values w = 0, 1 and w = ∞. We choose the function

V (z) =
z2w′2

w(w − 1)2
+ F (z, w)w′ +G(z, w)

which satisfies (2). Similarly to the previous subsections we state the following theorem.

Theorem 2.4 Let the function G satisfying

∂G

∂w
= − 2z2

w(w − 1)2





3
∑

n=−1

an(z)w
n +

b(z)

w − 1





be rational in w. Take the function F in the form

F (z, w) = − 2z2p(z)

3(w − 1)(w + 1)2
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which satisfies

(w − 1)(F (3w − 1) + 2w(w − 1)Fw)

2z2
= P :=

p(z)

(w + 1)
− 10p(z)

3(w + 1)2
+

8p(z)

3(w + 1)3
.

If the functions P, Q and R are holomorphic at w = 0, 1 and w = ∞ and the function Q has a
second order zero at w = ∞, then the coefficients in (14) are given by

b(z) = 2a−1(z) + a0(z)− a2(z)− 2a3(z), p(z) =
c

z
, a3(z) = −a2(z)

2
,

a2(z) = −2α

z2
,

a1(z) =
δzc/6 + γzc/12 + β + α

z2
,

a0(z) =
2δzc/6 − 2β

z2
, a−1(z) =

β

z2
,

where c, α, β, γ, δ are arbitrary. In particular, if c = 12, we get the fifth Painlevé equation given
by

w′′ =

(

1

2w
+

1

w − 1

)

w′2 − w′

z
+

(w − 1)2

z2

(

αw +
β

w

)

+ γ
w

z
+ δ

w(w + 1)

w − 1
. (15)

The proof is similar to the previous sections.
Next we remark about the dependence of the resulting equation on the choice of P. Indeed, we

make certain general assumptions (like the holomorphicity at certain points) on the coefficients
in the proof of the theorem. Therefore, we expect that certain changes in the choice of P
might lead to a different result. For example, the choice in [10] was that F = −4z/(w2 − 1).
In this case one should take P in the form P = 2(w − 1)2/(w + 1)2. However, this function is
holomorphic at w = 0, 1,∞ and one can show that equation (14) is still (15). We could have
chosen P (z, w) = p(z) + p1(z)/(w + 1) + p2(z)(w + 1)2 and get (15) as well.

2.5. The modified fifth Painlevé equation
If the function w(z) satisfies

w′′ =

(

1

2w
+

1

w − 1

)

w′2 +
3

∑

n=−1

an(z)w
n +

b(z)

w − 1
(16)

with singular values w = 0, 1 and w = ∞, and the function V (z) is given by

V (z) =
w′2

w(w − 1)2
+ F (z, w)w′ +G(z, w),

we have

Theorem 2.5 Let the function G satisfying

∂G

∂w
= − 2

w(w − 1)2





3
∑

n=−1

an(z)w
n +

b(z)

w − 1




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be rational in w. Take the function F in the form

F (z, w) = − 2p(z)

3(w − 1)(w + 1)2

which satisfies

1

2
(w − 1)

(

F (3w − 1) + 2w(w − 1)
∂F

∂w

)

= P :=
p(z)

(w + 1)
− 10p(z)

3(w + 1)2
+

8p(z)

3(w + 1)3
.

If the functions P, Q and R are holomorphic at w = 0, 1 and w = ∞ and the function Q has a
second order zero at w = ∞, then equation (16) takes the following form:

w′′ =

(

1

2w
+

1

w − 1

)

w′2 + (w − 1)2
(

αw +
β

w

)

+ γecz/12w + δecz/6
w(w + 1)

w − 1
,

where c, α, β, γ, δ are arbitrary. In particular, if c = 12, we get the modified fifth Painlevé
equation.

Proof 3 The proof is computational. The function F is rational provided b(z) = 2a−1(z) +
a0(z)− a2(z)− 2a3(z) and a2(z) = −2a3. Moreover, one gets

p(z) = c, a−1(z) = β, a3(z) = α, a0(z) = −2β + 2δecz/6,

a1(z) = α+ β + δecz/6 + γecz/12.

3. Discussion

In this paper we analised the principles of the construction of the auxiliary bounded functions
related to the Painlevé equations. Auxiliary functions satisfy the property that they are
analytic around every zero and pole for the (modified) third and fourth Painlevé equations
and additionally at every 1-point for the (modified) fifth Painlevé equation. We showed that
in particular, our construction yields the functions considered in [5, 7, 10] in the proofs of the
Painlevé property of the Painlevé equations. In principle, similar computations can be done for
the sixth Painlevé equation with 4 singular values w = 0, 1, z, ∞, but the calculations become
cumbersome and more involved.
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