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Abstract. Factorization procedures of first and second order are used to generate
Hamiltonians with known spectra departing from the harmonic oscillator with an infinite
potential barrier. Certain systems obtained in a straightforward way through said method
possess differential ladder operators of both types, third and fourth order. Since systems with
this kind of operators are linked with the Painlevé IV and V equations respectively, several
solutions of these non-linear second-order differential equations will be simply found.

1. Introduction
The idea of factorizing a differential operator in Quantum Mechanics yields a mighty technique
for solving Schrödinger equation [1, 2, 3, 4]. This method can be presented in several ways,
supplying us with interesting new results concerning the solvability of quantum problems
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and the spectral design of new potentials [11, 13, 15].

When applied to the harmonic oscillator, this procedure deforms the potential as well as the
underlying algebra of the system in a specific way [18, 17, 10, 19]. These deformations of the
harmonic oscillator algebra, which are called Polynomial Heisenberg Algebras (PHA), turn out
to be characterized by differential ladder operators of order m+1, with the commutator between
them being polynomials of degree m in the Hamiltonian. While systems realizing the second
order PHA are connected to the Painlevé IV (PIV) equation, those realizing the third order
algebras are linked to the Painlevé V (PV) equation [21, 20, 24, 23, 22, 17, 25].

These results have been used recently to produce plenty of non-singular solutions to the PIV
and PV equations [14, 26, 27]. With the aim of studying some singular solutions supplied by
said connections, we will continue the analysis now for the harmonic oscillator with an infinite
potential barrier at x = 0 [7, 28, 29], which we will call truncated harmonic oscillator. Caution
must be employed to avoid that singularities appear inside the domain of the potential.

The organization of this work is the following: in Section 2 we will review the factorization
method as needed in the rest of the paper as well as the way in which the Hamiltonians built
from the harmonic oscillator yields realizations of the second and third order PHA’s. We will
also present the procedure which connects these systems with the PIV and PV equations to
produce solutions of these non-linear second-order differential equations. Section 3 is devoted
to analyze the harmonic oscillator with an infinite potential barrier at the origin, its first and
second order transformations, and the systems thus obtained. In Section 4 we will obtain several
solutions to the PIV equation by using the extremal states of the supersymmetric partners of the
truncated harmonic oscillator. Thus far, Sections 2-4 comprise a review of a previous work which
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can be found in [28, 29]. However, Section 5 contains original results on how to obtain several
solutions to the PV equation respectively by using said extremal states. Finally, in Section 6 we
will summarize the results attained.

2. Factorization method
Let us suppose the existence of a one-dimensional Schrödinger Hamiltonian H = −1

2
d2

dx2 +V (x),
together with a k-th order differential operator A+. Then, for another one-dimensional

Schrödinger Hamiltonian H̃ = −1
2

d2

dx2 + Ṽ (x) which is “intertwined” with H through the relation

H̃A+ = A+H,

it is true that solutions of the stationary Schrödinger equation H̃ϕn(x) = Enϕn(x) are connected
to those of Hψn(x) = Enψn(x) by

ϕn(x) ≡ CnA
+ψn(x),

where Cn is a normalization constant. We will call H̃ and H supersymmetric partners, and we
will assume that both are Hermitian so that the potentials V and Ṽ are real.

If the new k-th order differential operator A ≡ (A+)† is introduced, then there is also an
intertwining relation involving A, which can be written as HA = AH̃. Even more, the products
of A and A+ become factorized as follows

A+A =
k∏

i=1

(H̃ − ϵi), AA+ =
k∏

i=1

(H − ϵi).

For k = 1 the intertwining operator A and the new potential Ṽ are determined by a solution
to the stationary Schrödinger equation Hu = ϵu as follows:

A+ =
1√
2

[
− d

dx
+ [ln(u)]′

]
,

Ṽ = V − [ln(u)]′′ ,

where ϵ is called factorization energy and u transformation function or seed solution.
For a second order intertwining operator (k = 2) the procedure is fixed by a pair of

transformation functions ui, which are also solutions of Hui = ϵiui, i = 1, 2. In a similar
fashion as for k = 1 now we obtain

A+ =
1

2

{
d2

dx2
− [lnW (u1, u2)]

′ d

dx
+

1

2

(
[lnW (u1, u2)]

′′ + [lnW (u1, u2)]
′2
)
− 2V + ϵ1 + ϵ2

}
,

Ṽ = V − [lnW (u1, u2)]
′′ ,

where W (u1, u2) is the Wronskian of the two seed solutions u1, u2.
The general case follows straightforwardly by induction from the previous cases [31, 32, 33,

34, 35, 36, 37]. As an example of this general procedure next we apply the method to the
harmonic oscillator.
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2.1. Harmonic oscillator
For the specific harmonic oscillator Hamiltonian

H = −1

2

d2

dx2
+
x2

2
,

a transformation of order k leads to a Hamiltonian H̃ having at most k new levels created at
the positions defined by the factorization energies ϵj , j = 1, .., k.

In such a case, the eigenfunctions ϕn(x) of H̃ associated to the eigenvalues En = n+ 1
2 of H

are

ϕn(x) =
A+ψn(x)√

(En − ϵ1)...(En − ϵk)
,

while the ones ϕϵj (x) associated to the new eigenvalues ϵj , are

ϕϵj ∝
W (u1, .., uj−1, uj+1, ..., uk)

W (u1, .., uk)
.

The k transformation functions uj , j = 1, ..., k are chosen from the general solutions of the

stationary Schrödinger equation −u′′j + V uj = ϵjuj with V = x2

2 :

uj(x) = e−x2/2

[
1F1

(
1− 2ϵj

4
,
1

2
, x2

)
+ 2νj

Γ(
3−2ϵj

4 )

Γ(
1−2ϵj

4 )
x 1F1

(
3− 2ϵj

4
,
3

2
, x2

)]
. (1)

In order to have a non-singular transformation, the Wronskian W (u1, .., uk) must have no zeros
on the real axis. This is achieved by demanding ϵk < ϵk−1 < ... < ϵ1 < E0 = 1/2 and |ν1| < 1,
|ν2| > 1, |ν3| < 1,... so that the new potential

Ṽ (x) =
x2

2
− [lnW (u1, ..., uk)]

′′

won’t have singularities in its domain.
Hamiltonians H̃ obtained by this procedure possess natural ladder operators, L± = A+a±A.

Since a± are the usual first order ladder operators of the harmonic oscillator, then L± are
differential operators of order 2k + 1. The set of operators {H̃, L+, L−} realizes the so-called
Polynomial Heisenberg Algebras (PHA), which in general are described by the commutators

[H̃, L±] = ±L±,

[L−, L+] = P2k(H̃),

where P2k(H̃) is a polynomial of degree 2k on the Hamiltonian H̃, which defines the system as
a deformation of the harmonic oscillator.

In particular, systems with third order ladder operators L± realize a second order PHA.
By factorizing them as L+ = L+

1 L
+
2 and L− = L−

2 L
−
1 where L−

1,2 = (L+
1,2)

† and L+
1 =

1√
2

[
− d

dx + f(x)
]
, L+

2 = 1
2

[
d2

dx2 + g(x) d
dx + h(x)

]
, we find at the end the following set of

equations:

f(x) = x+ g(x),

h = g′

2 − g2

2 − 2xg − x2 + ε2 + ε3 − 2ε1 − 1,

V = x2

2 − g′

2 + g2

2 + xg + ε1 − 1
2 ,

d2g
dx2 = 1

2g

(
dg
dx

)2
+ 3

2g
3 + 4xg2 + 2(x2 − a)g + b

g .
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The last equation can be recognized as the Painlevé IV (PIV) differential equation with constant
parameters a = ε2 + ε3 − 2ε1 − 1 and b = −2(ε2 − ε3)

2. Thus, we get a connection between
second order PHA’s and the PIV equation. We can either solve such a non-linear differential
equation in order to realize a second order PHA, or take a known realization of a second order
PHA and obtain then specific solutions to the PIV equation.

The last is done by using the factorization

N ≡ L+L− =
(
H̃ − ε1

)(
H̃ − ε2

)(
H̃ − ε3

)
, (2)

which indicates that there are three extremal states ϕλ, with λ = ε1, ε2, ε3, corresponding to the
eigenvalues ε1, ε2 and ε3 respectively such that L−ϕλ = L−

2 L
−
1 ϕλ = 0 and thus Nϕλ = 0. In

particular,

L−
1 ϕλ =

1√
2

[
d

dx
+ f(x)

]
ϕλ = 0

satisfies the extremal state condition. Without lost of generality, we denote by ϕε1 such a state,
but let us keep in mind that there are three possible identifications. Finally, let us recall that
f(x) = x+ g(x) to obtain

g(x) = −x− [lnϕε1 ]
′, (3)

which is a solution to the PIV equation with fixed parameters a, b.
On the other hand, systems with fourth order ladder operators L+ = L+

1 L
+
2 and L− =

L−
2 L

−
1 realize a third order PHA [10, 25]. Choosing L+

1 = 1
2

[
d2

dx2 + g1(x)
d
dx + h1(x)

]
, L+

2 =

1
2

[
d2

dx2 + g(x) d
dx + h(x)

]
and L−

1,2 = (L+
1,2)

† we find this other set of equations:

g1(x) = −g(x)− x,

g(x) = x
w−1 ,

d2w
dz2

=
(

1
2w + 1

w−1

) (
dw
dz

)2 − 1
z
dw
dz + (w−1)2

z2
(aw + b

w ) + cwz + dw(w+1)
w−1 . (4)

Equation (4) is recognized as the Painlevé V (PV) differential equation, with z = x2 and

a = (ε1−ε2)2

2 , b = − (ε3−ε4)2

2 , c = ε1+ε2−ε3−ε4−1
2 , d = −1

8 being fixed parameters.
This time we are concerned with the factorization

N ≡ L+L− =
(
H̃ − ε1

)(
H̃ − ε2

)(
H̃ − ε3

)(
H̃ − ε4

)
(5)

which shows that there are four extremal states such that L−ϕλ = L−
2 L

−
1 ϕλ = 0 and thus

Nϕλ = 0, λ = ε1, ε2, ε3, ε4 corresponding to the eigenvalues ε1, ε2, ε3 and ε4 respectively.
In a similar fashion as the previous case, but with lengthier calculations, without lost of

generality we can write g1 = (ln [W (ϕε3 , ϕε4)])
′ thus obtaining g(x) = −x − (ln [W (ϕε3 , ϕε4)])

′.
The use of two extremal states in this construction enables to fix now six different identifications
for ϕε3 and ϕε4 leading to g.

Finally, through the change of variable x =
√
z, the function

w(z) = 1 +

√
z

g(
√
z)
.

produces the solution to the PV equation with fixed parameters a, b, c and d [21, 37].

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012035 doi:10.1088/1742-6596/597/1/012035

4



3. Truncated harmonic oscillator
Adding an infinite potential barrier to the previous potential leads to modify the boundary
condition at x = 0. The Hamiltonian of this system is

H0 = −1

2

d2

dx2
+ V0, V0 =

{
x2

2 if x > 0,
∞ if x ≤ 0.

While both functions (and energies)

ψn(x) ∝ x e−x2/2
1F1

(
− n,

3

2
, x2

)
, En = 2n+

3

2
,

χn(x) ∝ e−x2/2
1F1

(
− n,

1

2
, x2

)
, En = 2n+

1

2
,

satisfy H0ψn = Enψn and H0χn = Enχn respectively, only the ψn satisfy the boundary condition
at the origin making each En an eigenvalue of H0, which is not the case for En.

In order to implement the factorization method, with a major control on the singularities
of the new potentials, we will use transformation functions as in equation (1) but with a

definite parity, i.e., we will proceed by cases taking uj(x) = xe−x2/2
1F1

(
3−2ϵj

4 , 32 , x
2
)

as the

odd transformation function and uj(x) = e−x2/2
1F1

(
1−2ϵj

4 , 12 , x
2
)
as the even one.

3.1. Intertwining operator with k = 1
Implementing a first order intertwining H1A

+ = A+H0 using an odd transformation function u
induces new Hamiltonians H1 with potentials of the form

V1 = V0 + 1 +
1

x2
−

{
ln

[
1F1

(
3− 2ϵ

4
,
3

2
, x2

)]}′′
, (6)

with eigenfunctions and eigenvalues given by ϕn ∝ A+ψn and En = 2n + 3
2 . For ϵ < 3

2 there is

no new level of H1 at ϵ, while in the limit ϵ = 3
2 one can erase the level E0 =

3
2 .

On the other hand, the use of an even transformation function u produces new Hamiltonians
H1 with potentials of the form

V1 = V0 + 1−

{
ln

[
1F1

(
1− 2ϵ

4
,
1

2
, x2

)]}′′

. (7)

In this case the eigenfunctions and eigenvalues of H1 become ϕn ∝ A+χn and En = 2n + 1
2 .

Again, for ϵ < 1
2 there is no new level of H1 at ϵ, and with the choice ϵ = 1

2 one can erase the

level E0 =
1
2 .

In any case, for both of these first order intertwinings the new Hamiltonians are isospectral
to H0, up to a shift in the ground state energy. This will not hold anymore for second order
intertwinings.

3.2. Intertwining operator with k = 2

A second order intertwining H2A
+ = A+H0, where H2 = −1

2
d2

dx2 + V2, requires to use two
transformation functions, u1 and u2 associated to ϵ1 and ϵ2 respectively, as described in Section
2. Without lost of generality, let us suppose that ϵ2 < ϵ1. We have found four non-equivalent
combinations for these seed solutions [28, 29]. The results obtained are to be described in what
follows.
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If both u1 and u2 are odd then the new potential takes the form

V2 = V0 +
3

x2
+ 2− [lnω1(x)]

′′ ,

where the function ω1(x) is free of zeros in the interval (0,∞) as long as ϵ1, ϵ2 < 3
2 or

3+4n
2 < ϵ1, ϵ2 <

3+4(n+1)
2 . The set of eigenvalues of H2 is given by {En = 2n+ 3

2 , n = 0, 1, ...}
with corresponding eigenfunctions ϕn(x) ∝ A+ψn(x). As a limiting case, when one of the
factorization energies takes the value En, then this level is erased from the set of eigenvalues.

In the case that u1 and u2 are both even it is found that

V2 = V0 +
1

x2
+ 2− [lnω2(x)]

′′ ,

where now the function ω2(x) will not have zeros in (0,∞) whenever ϵ1, ϵ2 <
1
2 or 1+4n

2 < ϵ1, ϵ2 <
1+4(n+1)

2 . In general, H2 has eigenvalues En = 2n+ 1
2 , n = 0, 1, ..., with ϕn(x) ∝ A+χn(x) being

their corresponding eigenfunctions. However when one of the factorization energies becomes En,
this level is missing from the set of eigenvalues.

For u1 being odd and u2 even with 1+4n
2 < ϵ2 < ϵ1 <

3+4n
2 , the new potential becomes

V2 = V0 + 2− [lnω3(x)]
′′ .

It does not have any singularity in the domain (0,∞) other than the original one at x = 0. The
eigenfunctions transform as ϕn(x) ∝ A+ψn(x) with eigenvalues En = 2n+ 3

2 . The limiting case
of this choice occurs when ϵ1 = En, which erases the level En. In addition, for ϵ2 ̸= En the level
ϵ2 is added with ϕϵ2 ∝ u1

W (u1,u2)
.

Finally, when u1 is chosen even and u2 odd, the new potential turns out to be

V2 = V0 + 2− [lnω4(x)]
′′ ,

where the function ω4(x) does not have zeros in (0,∞) whenever ϵ2 < ϵ1 <
1
2 or 3+4n

2 < ϵ2 <

ϵ1 <
5+4n

2 . The eigenfunctions of H2 are ϕn(x) ∝ A+ψn with eigenvalues En = 2n + 3
2 . With

the choice ϵ2 = En we can erase precisely this level. For ϵ1 ̸= En there is an extra level at ϵ1
with eigenfunction ϕϵ1 ∝ u2

W (u1,u2)
.

4. Solutions to the Painlevé IV equation
When performing a first order transformation on the truncated harmonic oscillator the
supersymmetric partners H1 possess natural third-order ladder operators L± = A+a±A, thus
we require just to identify the three extremal states to connect with specific solutions to the
PIV equation. From equation (2) we know that the extremal states of H1 are related to the
eigenvalues ϵ, ϵ+ 1, 1

2 , and they are given by

ϕε1 ∝ 1

u
, ϕε2 ∝ A+a+u, ϕε3 ∝ A+e

−x2

2 . (8)

Once again, one chooses a definite parity for u(x) in order to control better the position of the
singularities introduced by the transformation. For an odd transformation function, equation
(3) gives a solution to the PIV equation associated to the first extremal state of equation (8) of
the form

g1 =
1

x
− 2x+

(
1− 2

3
ϵ

)
x

1F1(
7−2ϵ
4 ; 52 ;x

2)

1F1(
3−2ϵ
4 ; 32 ;x

2)
.
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Meanwhile, for an even transformation function this procedure gives a solution to the PIV
equation associated also to the first extremal state of equation (8) of the form

g1 = −2x+ (1− 2ϵ)x
1F1(

5−2ϵ
4 ; 32 ;x

2)

1F1(
1−2ϵ
4 ; 12 ;x

2)
.

Once g1 is obtained, independently of the parity of u(x) the other two solutions to the PIV
equation are obtained through the expressions

g2 = −g1 − 2x− 2
[
x+(2ϵ−x2)(g1+x)+(g1+x)3

x2−2ϵ−1−(g1+x)2

]
,

g3 = − g′1+2
g1+2x .

Now, a second order transformation generates Hamiltonians H2 having natural fifth-order
ladder operators L± = A+a±A. Thus we need to employ the reduction theorem described in
[14] which ensures that if u2(x) = a−u1(x) and ϵ2 = ϵ1 − 1, then the system has as well third
order ladder operators l± such that

l+l− = (H2 − ϵ1 + 1)(H2 − ϵ1 − 1)(H2 − 1/2).

Therefore, the sought extremal states corresponding to the eigenvalues ϵ1 − 1, ϵ1 + 1, 1
2 are

ϕε1 ∝ u1
W [u1, u2]

, ϕε2 ∝ A+a+u1, ϕε3 ∝ A+e
−x2

2 .

From the procedure described previously, based on equation (3), we get now the following
solutions to the PIV equation

g1 = −x− α+ 2

[
x+ α

x2 + 1− 2ϵ1 − α2

]
,

g2 = g1 +
2α2 − 2x2 + 2(2ϵ1 + 1)

α− g1 − x
,

g3 =
(x+ α)g21 +

[
2ϵ1 − 1 + (x+ α)2

]
g1 + (2ϵ1 − 3)(x+ α)

(x+ α)2 + (x+ α)g1 + 2ϵ1 − 1
,

where α =
u′
1

u1
.

5. Solutions to the Painlevé V equation
As for the PV equation, let us recall first that the truncated harmonic oscillator Hamiltonian
has a pair of second-order ladder operators (a+)2 and (a−)2 which connect in a natural way the
eigenfunctions of H0.

In this way, for a first-order transformation the Hamiltonian H1 possesses also natural fourth
order ladder operators L± = A+(a±)2A, which satisfy the conditions described in the paragraphs
after equation (5). Using now the six different identifications of the extremal states ϕε3 and ϕε4
supplies us with several explicit solutions to the PV equation:

w1 = 1 +
2
√
2z(1 + 2ϵ− z +

√
2zα)√

2z(2 + z)− 4(1 + z)α+ 2
√
2zα2

,

w2 =

(
2α+

√
2z

) (
4α− 4ϵ

√
2z +

√
2z3/2 − 2

√
2α2√z − 4

√
2z

)(
2α−

√
2z−

) (
4α− 4ϵ

√
2z +

√
2z3/2 − 2

√
2α2

√
z + 4

√
2z

) ,
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w3 = 1+

√
2z

(
8ϵz − 2z2 + 4α2z + 4

√
2zα− 16

)
8α− 2

√
2z3/2 (α2 + 2ϵ− 3) + 4αz (α2 + 2ϵ− 1)− 8

√
2z (α2 + ϵ− 1) +

√
2z5/2 − 2αz2

,

w4 =
2
√
2− 2α

√
z −

√
2z

2
√
2− 2α

√
z +

√
2z
,

w5 =
2α+

√
2z

2α−
√
2z
,

w6 = −
−4α+

√
2z3/2 + 2

√
2
(
α2 − 1

)√
z + 4αz

4α− 2
√
2
√
z (α2 + 2ϵ− 2) +

√
2z3/2

,

where again we have α = u′

u .
Finally, for a second-order transformation the natural ladder operators L± = A+(a±)2A of

H2 are now of sixth order. So, we find ourselves in the need of a slight generalization of the
reduction theorem employed above. Such generalization requires now that u2 = (a−)2u1, with
ϵ2 = ϵ1 − 2, thus providing us with the fourth order ladder operators l± for H2 such that

l+l− =

(
H2 −

1

2

)(
H2 −

3

2

)
(H2 − ϵ1 + 2) (H2 − ϵ1 − 2) .

Analytic expressions for solutions to the PV equation obtained through this method, with a
second-order transformation and an arbitrary factorization energy ϵ1, are too long to be depicted
here. However, some simple examples for specific values of ϵ1 can be shown.

If we set ε1 = ϵ1 − 2, ε2 =
3
2 , ε3 =

1
2 , ε4 = ϵ1 + 2, we get:

w(z) =
3− z

2
with ϵ1 =

3

2
and u1(x) odd

For the identification ε1 =
1
2 , ε2 = ϵ1 − 2, ε3 =

3
2 , ε4 = ϵ1 + 2, it is obtained:

w(z) =
1− z

2
with ϵ1 =

1

2
and u1(x) even

Finally, for the permutation ε1 = ϵ1 − 2, ε2 = ϵ1 + 2, ε3 =
1
2 , ε4 =

3
2 , we arrive at:

w(z) =
1 + 2z − z2

4 + 4z
with ϵ1 =

3

2
and u1(x) even

6. Conclusions
In this work we have obtained sundry supersymmetric partners of the harmonic oscillator with
an infinite potential barrier. In particular those generated from the first-order technique turned
out to be isospectral to the truncated harmonic oscillator, while those obtained from second-
order SUSY offered greater possibilities for spectral design, e.g., it is possible to erase one or two
consecutive levels in the energy spectrum. It is also possible to add a new level to the original
spectrum in almost any position on the energy axis.

For each parity choice of the transformation functions we have found the factorization energy
domain allowing the non-singular first and second order supersymmetric transformations in
(0,∞). It must be noted that, for the initial singular potential the first-order transformations
with u(x) even and the second-order ones with both u1(x) and u2(x) even behave in a peculiar
way, since they transform the eigenfunctions of the harmonic oscillator which are not physical
solutions of the original singular potential into those which are eigenfunctions of the new
Hamiltonian and vice versa.

Even more, a simple and direct procedure to obtain several explicit solutions to the Painlevé
IV and V equations was implemented using the extremal states associated to the supersymmetric
partners of the harmonic oscillator with an infinite potential barrier at the origin.
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