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Abstract. We study k-hyperbolic harmonic functions

∆u− k

xn

∂u

∂xn
= 0,

in the upper half space Rn+1
+ = {(x0, x1, ..., xn) | xi ∈ R, xn > 0 for i = 0, ..., n} . The operator

x
2k

n−1
n

(
∆u− k

xn

∂u
∂xn

)
is the Laplace-Beltrami operator with respect to the Riemannian metric

ds2k = x
− 2k

n−1
n (dx2

0 + dx2
1 + ...+ dx2

n). In case k = n− 1 the Riemannian metric is the hyperbolic
distance of Poincaré upper half space. The proposed functions are connected to the axially
symmetric potentials studied notably by Weinstein, Huber and Leutwiler. We present the
fundamental solution in case n is even using the hyperbolic metric. The main tool is the
transformation of k-hyperbolic harmonic functions to eigenfunctions of the hyperbolic Laplace
operator.

1. Introduction
We are studying function theory connected to the hyperbolic Riemannian metric

ds2 =
dx20 + dx21 + ...+ dx2n

x2n

in the Poincaré upper half space

Rn+1
+ = {(x0, x1, ..., xn) | xi ∈ R, xn > 0 for i = 0, ..., n} .

This metric is interesting, since it is invariant under Möbius transformation mapping upper half
space onto itself (see [7]). Moreover, Leutwiler noticed in [9] and [10] that the power function
xm (m ∈ N0), calculated using Clifford algebras, is a conjugate gradient of a hyperbolic harmonic
function f , that is

∆hf = x2n∆f − (n− 1)xn
∂f

∂xn
= 0

where as usual

∆h =
∂2h

∂x20
+ ...+

∂2h

∂x2n
.
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and ∆h is the hyperbolic Laplace-Beltrami operator with respect to the preceding metric. He
started to study these type of functions.

In this paper, we study k-hyperbolic harmonic functions. Their function theory is investigated
by the first author in [3] and for k = n−1 for example in [5]. The Riemannian metric connected
to k-hyperbolic harmonic functions is

ds2k =
dx20 + dx21 + ...+ dx2n

x
2k

n−1
n

and they satisfy the equation

xn∆h− k ∂h
∂xn

= 0

(see [13]). Weinstein introduced axially symmetric potential theory in [14] and his motivation
was that if p < 0 is an integer then an axially symmetric harmonic function in 2−p-dimensional
space satisfies the preceding equation in the meridian plane (see for example [8]). It is known that
k-hyperbolic harmonic functions are forming also a harmonic space in the sense of Contantinescu
and Cornea [2] but this result is not giving any kind of concrete presentations for k-harmonic
functions.

We also need to consider the generalized Weinstein equation

x2n∆h− kxn
∂h

∂xn
+ lh = 0 (1)

in an open domain whose closure is contained in the upper half space. Earlier this equation has
been researched for example by Leutwiler and Akim in [1] and in [11]. Our general technical
assumption is that the constants l, k ∈ R satisfy 4l ≤ (k + 1)2. Our idea is that we transfer
solutions of this equation to the solutions of Laplace-Beltrami equation of the hyperbolic metric
in the Poincaré upper half space. In the main result, we present the fundamental solution of the
equation (1) in terms of the hyperbolic distance function in case n is even. Earlier these results
have been presented in R3 (see [6]).

2. Preliminaries
We recall the properties of the hyperbolic distance that we need later on (see the proof for
example in [12]).

Theorem 2.1 The hyperbolic distance dh(x, a) between the points x = (x0, ..., xn) and a =
(a0, ..., an) in Rn+1

+ may be computed as

dh(x, a) = arcosh λ(x, a),

where

λ(x, a) =
(x0 − a0)2 + ...+ (xn−1 − an−1)2 + x2n + a2n

2xnan

=
|x− a|2 + |x− â|2

4xnan
.

In above â = (a0, ..., an−1,−an) and |x− a| is the usual Euclidean distance.

We also apply the simple calculation rules of the hyperbolic distance stated next.
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Lemma 2.2 If x = (x0, x1, ..., xn) and a = (a0, a1, ..., an) are points in Rn+1
+ then

|x− a|2 = 2xnan (λ(x, a)− 1) , (2)

|x− â|2 = 2xnan (λ(x, a) + 1) , (3)

|x− a|2

|x− â|2
=
λ(x, a)− 1

λ(x, a) + 1
= tanh2(

dh (x, a)

2
), (4)

where â = (a0, .., an−1,−an).

We also note the relation between the Euclidean and hyperbolic balls.

Proposition 2.3 The hyperbolic ball Bh (a, rh) with the hyperbolic center a = (a0, ..., an) and
the radius rh is the same as the Euclidean ball with the Euclidean center

ca (rh) = a = (a0, ..., an cosh rh)

and the Euclidean radius re = an sinh rh.

Definition 2.4 Let Ω ⊂ Rn+1
+ be open. A twice continuously differentiable function f : Ω→ R

is k−hyperbolic harmonic if

∆f − k

xn

∂f

∂xn
= 0

for any x ∈ Ω.

An important tool for handling k-hyperbolic harmonic functions is their transformation to
eigenfunctions of the hyperbolic Laplace operator, stated next.

Lemma 2.5 Let Ω be an open set contained in Rn+1
+ . A function f : Ω → R satisfies the

Weinstein equation (1) if and only if the function g (x) = x
n−k−1

2
n f (x) satisfies the following

equation

∆hg +
1

4

(
n2 − (k + 1)2 + 4l

)
g = 0. (5)

Especially, a function f : Ω → R is k-hyperbolic harmonic if and only if the function

g (x) = x
n−k−1

2
n f (x) satisfies the following equation

∆hg +
1

4

(
n2 − (k + 1)2

)
g = 0. (6)

3. The fundamental solution in Rn+1
+ when n is even

We are looking for a fundamental solutions of the equation (6) connected to the hyperbolic
Laplace operator. The hyperbolic Laplace of functions depending on λ is computed in [4] as
follows.

Lemma 3.1 If f is twice continuously differentiable depending only on λ = λ (x, en) then

∆hf (x) =
(
λ2 − 1

) ∂2f
∂λ2

+ (n+ 1)λ
∂f

∂λ
.

It is easier to compute the solutions in terms of the hyperbolic distance.
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Theorem 3.2 If f is twice continuously differentiable depending only on rh = dh (x, en) =
arcosh λ(x, en) then the hyperbolic Laplace in Rn+1

+ is given by

∆hf (rh) =
∂2f

∂r2h
+ n coth rh

∂f

∂rh
.

Proof. Using λ(x, en) = cosh rh, we compute

∂rh
∂λ

=
1

sinh rh

and
∂2rh
∂λ2

= − cosh rh

sinh3 rh
.

Hence applying the chain rule we obtain

∂f (rh)

∂λ
=

∂f

∂rh

∂rh
∂λ

=
∂f

∂rh

1

sinh rh
,

∂2f (λ)

∂λ2
=
∂2f

∂r2h

(
∂rh
∂λ

)2

+
∂f

∂rh

∂2rh
∂λ2

=
∂2f

∂r2h

1

sinh2 rh
− ∂f

∂rh

cosh rh

sinh3 rh
,

completing the proof by the preceding Lemma.
In case n even, the preceding equation may be solved inductively. The crucial step is the

following result.

Lemma 3.3 Let s ∈ N0. If f is a solution of the equation

∂2f

∂r2h
+ 2s coth rh

∂f

∂rh
= γf (7)

depending on rh = dh (x, en) then the function g (rh) = 1
sinh rh

∂f
∂rh

(rh) satisfies the equation

∂2g

∂r2h
+ 2 (s+ 1) coth rh

∂g

∂rh
= (γ − 1− 2s) g.

Proof. We just compute

∂2g

∂r2h
=

(
− 1

sinh rh
+ 2

cosh2 rh

sinh3 rh

)
∂f

∂rh
− 2

cosh rh

sinh2 rh

∂2f

∂r2h
+

1

sinh rh

∂3f

∂r3h
,

2 (s+ 1)
∂g

∂rh

cosh rh
sinh rh

= −2 (s+ 1) cosh2 rh

sinh3 rh

∂f

∂rh
+

2 (s+ 1) cosh rh

sinh2 rh

∂2f

∂2rh
.

Since ∂2f
∂r2h

= γf − 2s coth rh
∂f
∂rh

we conclude

1

sinh rh

∂3f

∂r3h
= γg − 2s

cosh rh

sinh2 rh

∂2f

∂r2h
+ 2s

1

sinh3 rh

∂f

∂rh

= γg − 2s
cosh rh

sinh2 rh

∂2f

∂r2h
+ 2s

cosh2 rh

sinh3 rh

∂f

∂rh
− 2s

1

sinh rh

∂f

∂rh
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and therefore
∂2g

∂r2h
+ 2 (s+ 1)

∂g

∂rh

cosh rh
sinh rh

= (γ − 1− 2s) g.

Applying the previous result inductively, we are able to solve our main equation.

Proposition 3.4 Let A be the operator defined by A = 1
sinh(rh)

∂
∂rh

. If f is a solution of the

equation
∂2f

∂r2h
= γf

then g = Amf satisfies the equation

∂2g

∂r2h
+ 2m

∂g

∂rh

cosh rh
sinh rh

=
(
γ −m2

)
g.

Proof. Applying inductively the previous lemma, we may deduce the result as follows

∂2g

∂r2h
+ 2m

∂g

∂rh

cosh rh
sinh rh

=

γ − m−1∑
j=0

(1 + 2j)

 g

= (γ − (m+ (m− 1)m)) g =
(
γ −m2

)
g.

Corollary 3.5 If f is a solution of the equation

∂2f

∂r2h
= (γ +m2)f

then g = Amf satisfies the equation

∂2g

∂r2h
+ 2m

∂g

∂rh

cosh rh
sinh rh

= γg.

We are ready to state our main result.

Theorem 3.6 Let γ = (k+1)2−4l
4 −m2, α =

√
(k + 1)2 − 4l and n = 2m. The solution of the

equation
∂2g

∂r2h
+ 2m

∂g

∂rh

cosh rh
sinh rh

= γg

depending on the hyperbolic distance rh = dh (x, a) with a pole at x = a is

Fn,k,l (rh) =
sn,k,l (rh)

sinhn−1 rh

where sn,k,l (rh) =
∑j=m−1

j=−m+1 aj,n,l cosh
(
rn(α+2j)

2

)
for some constant aj,n,l defined inductively by

aj,n+2,l =
a(j−1),n (α+ 2j − 2n)− a(j+1),n,l (α+ 2 (j + n))

4
aj,n,0 = 0 if j < 1−m or j > m− 1,

a0,2,0 = 1
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and

sn,k,l (0) =
(−1)m−1 (n− 1)!!

2
.

Moreover, the function

Hn,k (x, a) = (−1)m−1 x
k+1−n

2
n a

k+1−n
2

n Fn,k,0 (dh (a, x))

is k-hyperbolic with respect to the both variables a and x.

Proof. Using the preceding corollary we obtain that the function Gn,k,l (rh) = CAmf is the
eigenfunction corresponding to the value γ when we choose

f (rh) =

{
sinh

(
αrh
2

)
, k 6= −1,

rh, k = −1.

Setting C = 2
α , we deduce that

F2,k,l (rh) =
cosh

(
αrh
2

)
sinh rh

is the eigenfunction corresponding to the value γ and the result holds when m = 1 and a0,2,0 = 1.
Assume that the result holds for some n = 2m. Then

Fn+2,k,l (rh) =

∑j=m−1
j=−m+1 aj,n,l (α+ 2j) sinh

(
rn(α+2j)

2

)
sinh rh

2 sinhn+1 rh

−
(n− 1)

∑j=m−1
j=−m+1 aj,n,l cosh

(
rn(α+2j)

2

)
cosh rn

sinhn+1 rh
. (8)

Applying the hyperbolic identities, we obtain

Fn+2,k,l (rh) =

∑j=m−1
j=1−m aj,n,l (α+ 2 (j − n+ 1)) cosh

(
rn(|k+1|+2(j+1))

2

)
4 sinhn+1 rh

−

∑j=m−1
j=1−m aj,n,l (α+ 2 (j + n− 1)) cosh

(
rn(α+2(j−1))

2

)
4 sinhn+1 rh

.

Setting aj,n,l = 0 if j < 1−m or j > m− 1, we obtain

aj,n+2,l =
a(j−1),n (α+ 2j − 2n)− a(j+1),n (α+ 2 (j + n))

4

completing the proof of the first assertion. The value of sn,k,l (0) follows inductively from (8).

The preceding function leads to the fundamental solution. For the proof we need the Green’s
identity (see for example [1]).

Lemma 3.7 Let R ⊂ Rn+1
+ be an open set with the smooth boundary contained Rn+1

+ and denote
the volume element corresponding to the Riemannian metric

ds2 =
dx20 + dx21 + ...+ dx2n

x
2k

n−1
n
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by dx(k) = x
− k(n+1)

n−1
n dx, the surface elements by dσ(k) = x

− kn
n−1

n dσ and the outer normal

∂u
∂mk

= x
k

n−1
n

∂u
∂m where m is the outer normal to the the surface ∂R. Then the Laplace-Beltrami

operator is

∆k = x
2k

n−1
n

(
∆− k

xn

∂

∂xn

)
and ∫

R

(
u∆kvdx(k) − v∆kudx(k)

)
=

∫
∂R

(
u
∂v

∂mk
− v ∂u

∂mk

)
dσ(k)

for any functions u and v that are twice continuously differentiable functions in an open
neighborhood containing the closure R of R.

As usual, we obtain setting v = 1 the result

Proposition 3.8 If R ⊂ Rn+1
+ be an open set and f : R→ R is k-hyperbolic harmonic then∫

∂Bh(y,ρ)

∂u

∂mk
dσ(k) = 0

for any Bh(y, ρ) with Bh(y, ρ) ⊂ R.

We need to prove that the preceding function Hn,k (y, a) is Lebesgue integrable and that its
normal derivative has some nice limiting property.

Lemma 3.9 The function Hn,k (y, a) is Lebesgue integrable in the hyperbolic ball Bh (a,Rh) and∫
Bh(a,Rh)

|Fn,k,0 (dh (a, y))| dy

y
2kn
n−1
n

≤M sinh2 rh

for some positive M > 0.

Proof. It is enough to prove the statement for a = (0, ..., 1). We recall that

sn,k (dh (y, a))

sinhn−1 dh (y, a)
=

sn,k (dh (y, a))

|y − coshRha|n−1

in Bh (a,Rh). Since sn,k (dh (y, a)) y
− 2kn

n−1
n is a continuous function, we only need to consider the

integral ∫
Bh(a,Rh)

sinh1−n dh (y, a) dy =

∫
Be(coshRha,sinhRh)

dy

|y − coshRha|n−1
,

since sinh dh (y, a) = |y − coshRha| by Proposition 2.3. Hence we have∫
Be(coshRha,Rh)

sinh1−n dh (y, a) dy =

∫ sinh rh

0
r

∫
∂Be(coshRha,1)

dydr =
ωn sinh2 rh

2
,

where ωn is the surface measure of the unit ball in Rn+1 .
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Lemma 3.10 Let Ω ⊂ Rn+1
+ be open. Let u be continuous in Ω. Denote Hn,k (y, x) =

(−1)
n
2
−1 y

k+1−n
2

n x
k+1−n

2
n Fn,k,0(y, x). Then

lim
Rh→0

∫
∂Bh(x,Rh)

u
∂Hn,k

∂mk
dσ(k)

2
n+2
2 π

n
2

= −u (x) .

for any hyperbolic balls Bh (x, rh) satisfying Bh (x, rh) ⊂ Ω.

Proof. We abbreviate Fn,k,0 = Fn,k. Using Proposition 2.3 we infer that in ∂Bh (x,Rh) the
outside pointing normal at y is

m = (ν0, ν1, ..., νn) =
(y0 − x0, y1 − x1, ..., yn − xn coshRh)

xn sinhRh
.

Denote rh = dh (y, x). We first compute

(−1)
n
2
−1 ∂Hn,k

∂mk
= (−1)

n
2
−1 y

k
n−1
n

∂Hn,k

∂m
= (−1)

n
2
−1 y

k
n−1
n (m, gradHn,k)

= y
(n−1)(k+1−n)+2k

2(n−1)
n x

k+1−n
2

n
∂Fn,k
∂rh

n∑
i=0

νi
∂rh
∂yi

+
k + 1− n

2
y

(n−1)(k−1−n)+2k
2(n−1)

n x
k+1−n

2
n νnFn,k.

Applying Lemma 2.1 we infer

∂rh
∂yi

=
∂rh
∂yi

=
∂ arccosλ (y, x)

∂yi
=
yi − xi − xn (cosh rh − 1) δin

ynxn sinh rh

and therefore we conclude
n∑
i=0

νi
∂rh
∂yi

=
1

yn
.

Hence we have

(−1)
n
2
−1 ∂Hn,k

∂mk
(y) = y

(n−1)(k−1−n)+2k
2(n−1)

n x
k+1−n

2
n

∂Fn,k
∂rh

+

k + 1− n
2

y
(n−1)(k−1−n)+2k

2(n−1)
n x

k+1−n
2

n νnFn,k

= y
(n−1)(k−1−n)+2k

2(n−1)
n x

k+1−n
2

n

s′k,n (rh)

sinhn−1 rh
−

(n− 1) y
(n−1)(k−1−n)+2k

2(n−1)
n x

k+1−n
2

n
sn,k (rh) cosh rh

sinhn rh
+

k + 1− n
2

y
(n−1)(k−1−n)+2k

2(n−1)
n x

k+1−n
2

n νnFn,k.

Since Bh (x,Rh) = B (xe, xn sinRh) for xe = (x0, x1, ..., xn coshRh) we obtain

lim
Rh→0

1

ωnxnn sinhnRh

∫
∂Bh(x,Rh)

y
(n−1)(k−1−n)+2k

2(n−1)
n x

k+1+n
2

n sinhRhs
′
k,n (Rh) dσ(k) = 0.
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Similarly, we compute that

lim
Rh→0

1

ωnxnn sinhnRh

∫
∂Bh(x,Rh)

u (y) (yn − xn coshRh) sn,k (Rh)

xn
dσ(k) = 0.

Since ωn = (−1)
n
2
−1 2

n+2
2 π

n
2

sn,k(0)
when n is even, manipulating the last integral we obtain

lim
Rh→0

− (n− 1) (−1)
n
2
−1

ωnxnn sinhnRh

∫
∂Bh(x,Rh)

u (y) y
(n−1)(k−1−n)+2k

2(n−1)
n x

k+1+n
2

n sn,k (rh) coshRhdσ(k)

= lim
rh→0

− (n− 1)x
k+1+n

2
n sn,k (0) coshRh

2
n+2
2 π

n
2 xnn sinhnRh

∫
∂Bh(x,Rh)

u (y)
(−1)

n
2
−1 sn,k (rh)

y
k+1+n

2
n sn,k (0)

dσ

= lim
rh→0

− (n− 1)x
k+1+n

2
n coshRh

ωnxnn sinhnRh

∫
∂Bh(x,Rh)

u (y)
sn,k (rh)

y
k+1+n

2
n sn,k (0)

dσ

= − (n− 1)u (x) ,

completing the proof.
Our most important result is the following formula.

Theorem 3.11 Let Ω ⊂ Rn+1
+ be open and Bh (y, ρ) a hyperbolic ball with the hyperbolic center

y and the hyperbolic radius ρ satisfying Bh (y, ρ) ⊂ Ω. If u is a twice continuously differentiable
function in Ω and x ∈ Bh (y, ρ) then

u (x) =
1

2
n+2
2 π

n
2 (n− 1)

∫
∂Bh(y,ρ)

(
Hn,k (y, x)

∂u (y)

∂mk
− u (y)

∂Hn,k (y, x)

∂mk

)
dσ(k) (y)

− 1

2
n+2
2 π

n
2 (n− 1)

∫
Bh(y,ρ)

∆ku (y)Hn,k (y, x) dx(k)

where dσ(k), dx(k) and ∂
∂mk

are the same as in Lemma 3.7.

Proof. Denote Bh (y, ρ) = B and pick a hyperbolic ball such that Bh (x,Rh) ⊂ B. Since Hh,k

is k-hyperbolic harmonic we obtain∫
B\Bh(x,Rh)

Hn,k∆kudx(k) =

∫
∂R

(
Hn,k

∂u

∂mk
− u

∂Hn,k

∂mk

)
dσ(k)

−
∫
∂Bh(x,Rh)

(u
∂Hn,k

∂mk
+Hn,k

∂u

∂mk
)dσ(k).

Since ∂u
∂mk

and y
k+1−n

2
− 2kn

n−1
n x

k+1−n
2

n sn,k (dh (x, y)) are bounded we obtain∫
∂Bh(x,Rh)

∣∣∣∣Hn,k (x, y)
∂u

∂mk

∣∣∣∣ dσ(k) (y) ≤ M

sinhn−1R

∫
∂Bh(x,Rh)

dσ = Mωn sinhRh

and therefore

lim
Rh→0

∫
∂Bh(x,Rh)

∣∣∣∣Hn,k (x, y)
∂u

∂mk

∣∣∣∣ dσ(k) (y) = 0.

Applying Lemma 3.10 we conclude the result.

Corollary 3.12 If φ ∈ C∞0
(
Rn+1
+

)
and ρ > 0 the radius such that supp(φ) ⊂ Bh (y, ρ) then

φ (x) = − 1

2
n+2
2 π

n
2 (n− 1)

∫
Bh(y,ρ)

∆kφ (y)Hn,k (y, x) dx(k).
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Conclusion
We have found the fundamental k-hyperbolic solution in odd dimensional spaces. Earlier these
results have only been proved in R3

+ (see [6]). Using this result in consecutive papers, we will
obtain kernels in hyperbolic function theory based on k-hyperbolic functions and Cauchy type
integral formulas.
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transformations. In Classical and modern potential theory and applications (Chateau de Bonas, 1993)
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 430 (Dordrecht: Kluwer) 19–29

[2] Constantinescu C and Cornea A 1972 Potential theory on harmonic spaces (Berlin: Springer)
[3] Eriksson-Bique S-L 2003 k-hypermonogenic functions Progress in analysis (Singapore: World Scientific)

337–48
[4] Eriksson S-L 2010 Hyperbolic Extensions of Integral formulas Adv. Appl. Clifford Alg. 20 pp 575–86
[5] Eriksson S-L and Leutwiler H 2009 Hyperbolic harmonic functions and their function theory Potential theory

and Stochastics in Albac (Theta series in advanced mathematics) pp 85–100
[6] Eriksson S-L and Orelma H 2014 Hyperbolic Laplace Operator and the Weinstein Equation in R3

+ Adv. in
Appl. Clifford Algebras 24 109–24

[7] Hua L-K 1981 Starting with the unit circle (Berlin: Springer)
[8] Huber A 1954 A Uniqueness of Generalized Axially Symmetric Potentials Ann. of Math. 60 351–368
[9] Leutwiler H 1992 Modified Clifford analysis Complex Variables 1 153–71

[10] Leutwiler H 1992 Modified quaternionic analysis Complex Variables 20 19–51
[11] Leutwiler H 1987 Best constants in the Harnack inequality for the Weinstein equation Aequationes Math. 34

304–15
[12] Leutwiler H 2004 Appendix: Lecture notes of the course “Hyperbolic harmonic functions and their function

theory”Clifford algebras and potential theory, Univ. Joensuu Dept. Math. Rep. Ser. 7 (Joensuu: Univ.
Joensuu) pp 85–109

[13] Orelma H 2010 New Perspectives in Hyperbolic Function Theory Doctoral Dissertation (Tampere University
of Technology 892)

[14] Weinstein A 1953 Generalized Axially Symmetric Potential Theory Bull. Amer. Math. Soc. 59 20–38

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012034 doi:10.1088/1742-6596/597/1/012034

10


