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Abstract. We investigate the geometric characteristics of constant Gaussian curvature
surfaces obtained from solutions of the G(m, n) sigma model. Most of these solutions are related
to the Veronese sequence. We show that we can distinguish surfaces with the same Gaussian
curvature using additional quantities like the topological charge and the mean curvature. The
cases of G(1,n) = CP™! and G(2,n) are used to illustrate these characteristics.

1. Introduction

In recent papers [1,2], we have classified some relevant solutions of the Grassmannian G(m,n)
sigma model that are associated to constant Gaussian curvature surfaces in su(n). In our
construction, we have found, among others, some non-equivalent solutions with the same
constant Gaussian curvature. In the non-holomorphic case [2], we have considered a particular
set of solutions starting from the knowledge of the corresponding solutions of G(1,n) = CP"1,
the so-called Veronese solutions. In the holomorphic case [1], we presented some conjectures and
constructed some solutions which are not related to the Veronese ones. These results clarified
and extended results obtained elsewhere [3-9)].

In this contribution, we aim to show that some of the surfaces that have the same constant
Gaussian curvature and correspond to non-equivalent solutions of G(m,n), up to a gauge
transformation, may be distinguished by other geometric characteristics such as the topological
charge and the mean curvature. The case of G(2,n) will be discussed in detail to show how this
works out.

In Section 2, we discuss the G(m,n) sigma model and we define the geometric quantities for
the surfaces associated to G(m,n). In particular, we recall a class of solutions of the model that
lead to surfaces with constant Gaussian curvature and explain the relation with the Veronese
sequence. We compute explicitly the additional geometric characteristics of these surfaces. In
Section 3, we show how these quantities could explain the differences between surfaces of same
constant Gaussian curvature. We re-visit the case of G(1,n) = CP"! and give some general
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results for G(m,n). We show, in the case of G(2,n), how different solutions with the same
Gaussian curvature can be distinguished by calculating their topological charge and/or their
mean curvature. We conclude this section with the case of non-Veronese holomorphic solutions.
Section 4 presents our conclusions and future outlook.

2. Surfaces associated to solutions of G(m,n)

2.1. The model

The two-dimensional G(m,n) sigma model is a field theory [10] defined on the complex plane C
which has the Grassmannian manifold G(m,n) as its target space:

U(n)
U(m)x U(n—m)’

1

G(m,n) n>m, (1)

where U (k) is the set of k X k unitary matrices. The field Z(zy,x_) defined on an open and
simply connected subset €2 of C thus takes values in G(m,n). The elements Z of G(m,n) are
parametrized by n x m matrices and satisfy Z1Z = I,,,. Moreover, they correspond to critical
points of the energy functional defined via the Lagrangian density

L(Z) = %Tr [(D+Z)TD+Z +(D_2)'D_z], 2)

where DLA = 0+A — A(ZT0+Z) are the covariant derivatives, 0+ = 0,, and (zy,r_) are
complex local coordinates on 2. We consider the case of 2 = C and require the energy of these
fields to be finite. To achieve this we have to impose the boundary conditions D+Z — 0 as
|z4| — oo. With such boundary conditions, the complex plane C is compactified into the
two-sphere S? via the stereographic projection and, as a consequence, the fields Z are harmonic
maps [11] from S? into the Grassmann manifold G(m,n).
Using the variation of the energy, we deduce the Euler-Lagrange equations of the model given
as (£ +— F)
DD _Z+ZD_Z)'D_Z=0, Z'Z=1,. (3)

The finite energy solutions of these equations are fully known in the G(1,n) = CP"! case [11].
They are given by

Pi
i = erf7 i:(),l,---,n—l, (4)
[PLf
where f = f(z4) € C™ is holomorphic and Py is an orthogonalizing operator defined recursively
as
flo.f i i n
PRf=f, Pof=0uf—5pf, PLf=PUPC), PLE=0. (5)

For the G(m,n) model with m > 2, the complete set of solutions is not known, but we can
use the solutions (4) of the G(1,n) model to construct particular classes of them:

Pil Piz Pim
Z(i1i2~~-i): +f, J-rf,"', +f , 0< << <y <n—1. (6)
58257 5tm |Pi1f’ ’Pff‘ ‘P_lt,_mf|

A convenient way to reformulate the model in a gauge-invariant way involves using orthogonal
projectors [10]. Indeed, for G(m,n), we define a rank m hermitian orthogonal projector P as

P=2Z. (7)
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This projector satisfies
P2 =Pl =P, Tr(P)=m. (8)

The Lagrangian density (2) and the Euler-Lagrange equations (3) can be rewritten in an
equivalent way as

1
L(P) = 5Tr(04PO_P), [0,0_-P,P] =0, P>=P. (9)
A solution of the type (6) leads to a projector of the form:
5 PLF(PLY)!
— P R A B A
Pg = - BiPj, Pj= ZJZj = ’Perf\? ) (10)

where (3 is a n—column vector such that $; = 0 or 1 for all j and Z}Z& Bj = m.
The key, in constructing surfaces from the solutions of the G(m,n) model, is to observe that
the Euler-Lagrange equations (9) may be rewritten as a conservation law:

O,L—9_LT=0, L=I[0_P,P. (11)

Then, using the Poincaré lemma and the fact that € is simply connected [12], we may define a
surface X € su(n) (the set of n x n hermitian and traceless matrices) via its tangent space as

dX = L'dz, + Ldz_ (12)
or explicitly
0+ X =[0;P,P], 0_-X=—[0_P,P]. (13)

2.2. Lagrangian and topological densities
Let us recall that the topological density is defined by [10]

Q(P) = %Tr [(D+Z)TD+Z —(D_2)'D_Z| = %Tr [P[0_P, 0. P]], (14)

showing, in particular, that for a holomorphic (or anti-holomorphic) solution, which satisfies
D_Z =0 (or D4+Z = 0), it coincides with the Lagrangian density (up to a sign).

Hence, for the solutions of type (10), we get the following explicit expressions for the
Lagrangian density (9) and the topological density (14):

- Pl f|2 1 n—1 |ij 2
52 5] 1_5J2|J3§1f|2’ 2215] 1—3; |Pj+1"f|2 (15)
Jj=1 J

—

Let us exhibit some properties of the topological charge. First we rewrite the topological density
as

n—1 i+1 £12 J 12 n—1

[P f [Py f

S| - zﬂj & ) S hem) o

pr Pifp PP T &
showing that Q is a purely additive quantlty. Furthermore, using the topological property
[PLE |PLP

QP ="——— -t =0.0_Wn(|PLf]?), (17)
[PLIZ PP
the topological density takes the compact form
n—1
Q(Ps) = 0:0-In [ IPLfI%. (18)

J=0
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2.8. Mean and Gaussian curvatures
In order to extract some geometric properties of the surface X defined as in (12), we introduce
a scalar product on the Lie algebra su(n):

(A, B) = %Tr(AB), A, B € su(n). (19)

The first fundamental form [12] of the surface X is given by:
I = (dX,dX) = gi4da? + 2g+_dxidr_ + g—_da?, (20)
where g, are the components of the metric tensor and are given by
g++ = <aiX,8iX> = —<8iIP>, BiP>, g4F = (8iX,8;X) = <6i]P’, 8;:[?). (21)
Since we are interested in solutions P given in (10), we can show that our surfaces are conformal

maps and that the metric components take the form:

1
grx =0, g4— =g+ = 5Tr(0+PO-P). (22)

Note that the expression for g, _ is identical to the expression for the Lagrangian density (9).
Using the Brioschi formula [12], we see that the Gaussian curvature K of the surface X associated
to the solution P:

K=-——"9,0_Ing, . (23)
J+—

Let us now calculate the expression for the mean curvature H [12] associated to solutions of
the model. As we have shown the considered surfaces are conformal maps and we know that
the expression for the mean curvature is given as

1
H= 5Tr(II(I*l)), (24)
where II is the second fundamental form defined as
I = (9 X, N)dz? +2(0,0_X, N)dzydr_ 4 (92X, N)da? = —(dX, dN). (25)

In the above expression, N is a normal unit vector to the surface X and thus satisfies
(dX, N) = 0. Using the conformal property of the surfaces the mean curvature is given by

o = (0+0-X.N) (26)
9+—

Due to the expression (13) and from the Euler-Lagrange equations (9), we easily get :
(9+8_X = [84_]?, 8_P] = [6+X, 6_X] (27)
We may thus define a unit normal vector IV to the surface X as

[8+X7 afx] a+8,X
N = = € su(n 28
N0, X.0.X]| ~ Ja,o.x] < = (28)

remembering that (dX, N) = 0. Hence, we see that the mean curvature # is given by

10+0-X]| _ [[[0+P, 0_P]|
= = 2 . 2
[ Ji— Tr(04+PO_P) (29)
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3. Solutions of G(m,n), their associated surfaces and geometric characteristics

3.1. Special case of CP™™! and the Veronese sequence

In the late 80’s, Bolton and al.[11] fully classified constant Gaussian curvature surfaces X
associated to the solutions (4) of the CP"~! model. Indeed, the set of all solutions is obtained
from the Veronese holomorphic curve f defined as

flzy) = (1,\/<n;1>w+,---,mxi,---,xi—1>T. (30)

This holomorphic curve satisfies the following identity, which will prove to be useful in the rest
of the paper:

’P«Zkf|2 — Q5 n (31)
P (L4 [af?)?
where
aip=1in—1), i=12,---,n—1 (32)
In this case, the Gaussian curvature K takes the form
K(Z) = — (1,n) 14 2i(n—1—4) (33)
) = ri(l,n)=ri=n— iln—1—1).
(2 ’]"1(1, ’]’L) b 7 Y 2
We see that the quantity r; admits an obvious symmetry given by
Ti = Tn—1—i, (34)
which shows that some surfaces associated to non-equivalent solutions Z; and Z,,_1_; have the
same value of constant Gaussian curvature. Note that when n is odd, we omit i = ”Tfl since

Zi = Zn-1—i-
Thus we need other geometric quantities to differentiate them. In this case, the topological
density is sufficient since we have

Q(Zz) = W; Qi(lyn) =qgi=n—1-2, (35)
where ¢; satisfy the relation:
n—1—i = —¢j- (36)

To go further, we express the quantity «;, in terms of the r’s and ¢’s given, respectively, in
(33) and (35). We get

Gntin = 3 m + (27 = D] = 4G = 1), (37)

which will help us to express the geometric expressions in terms of the r’s and the ¢’s. For

example, we have
1 1
Qmn = B [T — @m) Am41,n = 9 [T + @m] - (38)

The mean curvature H;, associated to the solution Z;, is constant and is given by

2 2
\/ Qi — QinQitin + Qi \/ r? 4 3¢7
Hi =2 = .

Qjn + Qit1n T

(39)

This geometric quantity is not necessary to differentiate surfaces of CP"~! and of equal Gaussian
curvature, but it will become relevant for higher dimensional Grassmannians.
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3.2. Geometric characteristics of the Veronese curves of G(m,n)

For the general Grassmannian G(m,n), we take the solution Pg given in (10) with f chosen as
the Veronese holomorphic curve (30). The Lagrangian and topological densities are then given
by

_ _rg(mn) _ _gg(m,n)
O g O T R .
where
n—l n—1
] 1— /Bj Qjin, QB(ma n) = Z(/ijl - Bj)aj,w (41)
]=1 j=1

Due to the fact that 3; are 0 or 1, we easily deduce the following expressions:

n—1 n—1

rg(m,n) — qs(m,n) = 2> Bijojn—2Y  BiBj-10m, (42)
=1 j=1
n—1 n—1

rg(m,n) +qz(m,n) = 2 Z Bi1ajn — 2 Z BiBi—1jn. (43)
i—1 i—1

These expressions are slightly different from the ones obtained in the CP"~! case. Indeed, they
exhibit interactions between consecutive projectors IP;_; and P; in the general expression of Pg,
which is absent in the CP"~! case.

Let us recall that the Gaussian curvature of the surface associated to the solution Pg is given
by

4
K=—. (44)
rg(m,n)

Moreover, we can also calculate the numerator of the mean curvature expression given in (29)
and we get

1
1[0+ Pg, O-Pg][|* o Z(ﬁg 1= Bi)2ajn((Bj—1 = Bj)*jn — 585 = Bi+1) @jsin

,]:

(Bj—2 = Bj—1)’j—1n)- (45)

N =

For example, the holomorphic solutions, in the G(m,n) case, which are described by 3; = 1 for
1=0,1,---,m—1land ;=0fori=m,m+1,--- ,n—1 lead to

(hol)
s

(m,n) = qgml)(m,n) = . = m(n —m), ’H(h()l)( n) = 2. (46)

Let us illustrate, in the following subsection, the case of G(2,n) and the need to use further
geometric characteristics to distinguish surfaces with the same Gaussian curvature.

3.2.1. The case of G(2,n): some examples In this case, we have already computed the Gaussian
curvature for some surfaces associated to non-holomorphic solutions of G(2,n). For example,
we have found [2] that

T2,3(27 7) = 1"0’5(2, 7) = 22. (47)

If we now compute the topological charge we find that

2,3(2,7) = q05(2,7) = 2. (48)
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This means that we need other quantities to differentiate the geometry of these two surfaces.
The explicit forms of the quantities 753(2,n) and ¢3(2,7n) are obtained directly from (42) and
(43). Indeed, we have to distinguish two cases: when ; = ;41 = 1 (interaction), we get

4j+1(2,n) = 2(n—2-2j), (49)
rj7j+1(2,n) = Q(n -2 —1—](71 —2— ])) = qj’j+1(2,n) + Qaj; (50)

and when §; = f; =1 for k > j 4+ 1 (absence of interaction), we get

Gr(2,n) = 2(n—1-7—-k), (51)
rik(2,n) = 2(n—14+jn—1-4)+k(n—1-k)) =q;r(2,n) + 205 + 204, (52)

Finally, we have (note that, for simplicity, we have set o; = o )

,/042 + o? 9
Hiit1 p¥ L (53)

)
oy + Qg9
\/Oé@2 — Q@1+ OF ) — Qip1Qiye + OF Ly — Qi + aF
Hiiva = 2 7 >4
Qi + Qi1 + Q2 + Qg3
o — a1 + oy +og — oo +agyy
Hij>ire = 2 ' (55)

a; + a1 + oy + g

The mean curvature is constant in each cases and it can be used to differentiate the geometry
of the surfaces associated to P 3 and Py 5 in G(2,7). Indeed, we have

Hoz = ——, Hop=——. (56)

In Table 1, we give the examples of G(2,n) with n = 4,5,6.

Table 1. The G(2,4), G(2,5) and G(2,6) models
(0,7) | mij | i | Hij
_ (0,1) | 8 [ 8 | 2
(7’7.7) 717;7]‘ q’L,j H’L,j (1 2) 14 4 \/17()7
1 9 ’
(Z,j) Tiyj qu‘ 'HZ'J' (0’ ) 6 6 2\/ﬁ (273) 16 0 \/5
0,1) ] 4 2 (1,2) | 10 | 2 o (0,2) | 22| 6 | ¥
1,2 6 | 0 | v2 | |[(02)]16] 4 | /3
, 0,3) | 22 | 4
0,3) | 14 | 2 | 241 11
0.2) |10 2 | /2 ! 7 (0,4) | 18 | 2 | /@
0,49 ] 8 | 0 | v2 9
(1,3)[ 20 0o | L+ (0,5 ]10 ] 0 | v2
: /5 (1,3) | 30 | 2 | ¥
(1,4) | 26 | 0 | B2
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3.2.2. The case of G(2,n): more general results In this section, we give a partial answer to the
following question: If ¢; ; = qx; and 7;; = 7, is the mean curvature sufficient to differentiate
the surfaces associated to IP; ; and Py ;7

To answer this question, we have to consider three cases.

The first case arises when j =4+ 1 and [ = k£ + 1. In this case, ¢;i+1 = gk r+1 and so k =1
and we are, thus, dealing with the same solution. We may exclude this case.

The second one is corresponds to j > ¢+1 and [ > £+ 1. In this case, the condition g; ; = g
leads to i+ j = k+1 which is equivalent to [ = ¢+ j — k. Then one wants r;; = ry; which implies
that

Tigj — Tkl =Tij — Tkjit+j—k = 4(i — k)(] — k) =0 — i=k or j = k. (57)

But if i = k, then j = [ and so we are dealing with the same solution. Moreover, when j = k,
we have i = [, but this contradicts the original assumption that j > i + 1. So we may ignore
this case too.

The third case is the one we have encountered for different grids: j =i+ 1 and [ > k + 1.
The constraint ¢; ;41 = qx, leads to l; = 2i — k + 1 and together with [ > k£ + 1 implies 7 > k.
Solving the constraint r; ;41 = r;, we get an expression for the dimension n which is given by

2k(1 + k)

m =30+ 1= A+

, 1>k (58)
So let us now look for a couple (k, i) such that ny; is an integer. Once we have found such a

couple, we must check that it satisfies the constraints I ; =2i —k+1<mnand i <n — 1.
We have

e ng;=3i+1€N, 4>0: This shows that the projectors IP; ;11 and Pg 2,41 have the same
Gaussian curvature and topological charge. But can their corresponding mean curvatures
be different? If they are the same, we have

Hopis1 )’ 2+ + 3 + i3 + 2i*
70,2i41 — +,+ .2+,3+ _ =1 < i=1L (59)
Hiiv1 ) pezipr 22— 60+1°+ 8%+ 4
However, the case ¢ = 1 can be easily understood since, in this case, ng1 = 4 and we are
thus comparing the projectors P; o and Py 3 which correspond to the same solution of the

G(2,4) model. So we see that, in this case, the mean curvatures are different.

e ni; = —3+ 31+ % € N, ¢ > 1. This shows that the only admissible 7 is ¢ = 3. In
this case, we have n13 = 7 and we are comparing the projectors P34 and P1 6. Using the
completeness relation, this is the same as comparing the projectors Py 3 and Py 5 which is
consistent with the discussion of subsection 3.2.1. As we already know, the mean curvatures
are different.

® ng; = —7+ 31+ % € N, ¢ > 2: Putting all the constraints together, this shows that
the only admissible ¢ are i = 11 and 7 = 5. In the first case, we get n9 11 = 27 and we are
comparing the projectors P11 12 and P2 2;. The second possibility leads to na 5 = 10 and we
are, then, comparing the projectors P5 s and P2 9. As before, we can show that the mean

curvatures are different.

Let us make some further comments. Indeed, if we set [ = n — 1, then we have that
n = 2i + 2 — k which can then be compared with the formula for n;;. Doing so, we obtain
t=k—1ori=1+2k. The case : = k — 1 must be rejected due to the constraint that i > k.
This means that we are left with the unique choice i = 1 4 2k. Thus we have ny 1401 = 4 + 3k
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and we are comparing surfaces associated to the projectors IP1 ok 2401 and Py 34 3;. This general
result is consistent with the above examples. Furthermore, we can show that

(4+3k) \ 2
M s+3k _ 918K+ I8K2 40K + 260 e 9 o 10 (60)
7 (4+3%) 9+ 36k + 49k% + 24k + 4kt o2 T
14-2k,24+2k

Since k > 0, the mean curvatures are different. Note that the case k = 0 is to be rejected as
previously discussed.
In Table 2, we give some possible values of i. This table contains all the examples mentioned

Table 2. Some possible values of i in the expression for ny;

i Nk,i Ui i Comments
2k(1+k)—1 |6k +2k—1 | 4k + 3k — 1 k>0
E(l+k)—1 | k@Bk—1) [ 2k +k—-1 kE>1

2k + 1 3k +4 3(k+1) k>0
2k — 1 3k —1 3k —1 N/A

above. The above discussion works for k = 3,4, but for k = 5 new cases arise. Indeed, there
are two of them: ns 19 = 41 with I519 = 34 and n5 14 = 27 with I514 = 24. The later one can
be explained using the fact that 2k(1 4 k) in the expression of ny; is always divisible by 4. We
have summarized all this information in Table 3. We conjecture that, that as k increases, the

Table 3. Values of i for which 2k(1 + k) is divisible by 4

1 N Ui i Comments
m(2m + 3) 6m?>+m-+1 [4m(m+1) |[k=2m+1 m>2
m@2m+1)—1[6m? —5m+2 | 4m?—1 k=2m m>2

number of cases increases too and it is totally dependent on the prime decomposition of the
factor 2k(1 + k) in the expression for ny, ;.

3.3. Non-Veronese holomorphic solutions
We have conjectured [1] that we can construct a holomorphic solution in G(m,n) of constant

Gaussian curvature K = % for all integer values of r = 1,2,---,aynn. The maximal value
r = amny = m(n —m) is obtained from the Veronese holomorphic curve (30) and its m — 1
consecutive derivatives. The values of r = 1,2,--- /m(n — 1 —m) are obtained from the natural

immersion of G(m,n—1) into G(m, n). The other values are not obtained from such immersions
nor from the Veronese curve. Furthermore, for the same value of the missing r, we may find
non-equivalent solutions Z; = Z;L;, i = 1,2. As an example, in the G(2,5) case, we have
obtained [1] two non-equivalent holomorphic solutions corresponding to r = 5 parametrized by

o 1 0 by \/Sg;i 0 . 1 0 x4 %xa_ 0

Zy = 0 1 522 g3 1.3 s Ly = 7.2 s |- (61)
.’,U+ %LU_;'_ ﬁl’_;'_ 0 1 2$+ ﬁl’_i_ \/gx+

Of course, we know that, in the holomorphic case, the Lagrangian density corresponds to the

topological one. Since the Lagrangian density of these two solutions is the same this is also
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the case for the topological density. Hence, the mean curvature will distinguish them. Indeed,
using Z = ZL that satisfies Z1Z = (LLY)™!, we get P = Z(ZTZ)~1Z%. In this case, the mean
curvature is not a constant, i.e. H; = H;(|z|*) . Moreover, we can show that H; # Hs. Indeed
from (29), we get

2 2

<H1) = M, Pa(y) = y5P, <1) = 25 + 110y + 28512 + 428y> + 355y + 1505° + 25¢/°.
Ha Pa(lz|?) y

4. Conclusions and Outlook
In this paper, we have studied various geometric properties of surfaces constructed from the
solutions of the two-dimensional G(m,n) Sigma model. The aim of our work was to see
whether we can differentiate surfaces of equal constant Gaussian curvature by involving also
the topological density and the mean curvature. This problem originated from the complete
classification of constant Gaussian curvature surfaces [11] associated to Veronese holomorphic
curves for CP"~!. In this classification, some non-equivalent solutions had, due to a symmetry
property, identical Gaussian curvatures. In these cases, the topological charges had different
values.

We have not fully solved the problem which has turned out to be more complicated than
originally envisaged. So here we report where we are at present. We have generalized our
previous results to more general Grassmannians. We have obtained explicit expressions for
the Gaussian curvature, the topological density and the mean curvature for these solutions.
We have shown, in the case of G(2,n), that some non-equivalent solutions may have identical
Gaussian curvature and also identical topological densities. This has led us to consider the second
fundamental form of these surfaces and we have computed their mean curvature. Some partial
results for the G(2,n) case show that the mean curvature is sufficient to distinguish surfaces
with identical Gaussian curvatures and topological charges. Furthermore, we have shown that
the projectors having this property are all of the form IP; ;11 and Py ; with [ > k + 1.

The case of holomorphic solutions which are not of the Veronese type and that cannot be
obtained from immersions of lower dimensional Grassmannians is really challenging since we have
no general formula for these cases. Our results are complete for the G(2,5) model where we
have shown that all solutions of equal Gaussian curvature and topological density have distinct
mean curvature.
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