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Abstract. The Dicke model is derived in the contraction limit of a pseudo-deformation of
the quasispin algebra in the su(2)-based Richardson-Gaudin models. Likewise, the integrability
of the Dicke model is established by constructing the full set of conserved charges, the form
of the Bethe Ansatz state, and the associated Richardson-Gaudin equations. Thanks to
the formulation in terms of the pseudo-deformation, the connection from the su(2)-based
Richardson-Gaudin model towards the Dicke model can be performed adiabatically.

1. Introduction
The interaction of a single quantized mode of electromagnetic radiation (photons) with a two-
state system, such as a nuclear spin or two-level atom, can be modeled by means of the Rabi
Hamiltonian [1]. Although simple and physically transparent in its formulation, the Rabi
Hamiltonian does not offer a known exact eigenstate in general, due to the ‘counter-rotating’
interaction terms in the Hamiltonian (We kindly refer the reader to a recent discussion on the
solvability and integrability of the Rabi Hamiltonian [2]). In the resonance regime however,
these fast-frequency counter-rotating terms average out with respect to the collective two-
level oscillations, and can be neglected in first-order perturbation (the so-called Rotating Wave
Approximation (RWA)). This gives rise to the Jaynes-Cummings (JC) Hamiltonian of quantum
electrodynamics [3]. Due to the RWA, the JC Hamiltonian exhibits an additional symmetry,
which allows for the decomposition of the Hilbert space into irreducible representations (irreps)
conserving the total number of (bosonic and atomic) excitations. For the two-level (s = 1/2
quasispin) formulation of the JC model, these irreps remain two-dimensional and therefore
reduce to two-level mixing models. One of the successes of theoretical and experimental
quantum mechanics is that such simple theoretical models have been validated in sophisticated
experiments situated in cavity quantum electrodynamics [4], circuit quantum electrodynamics
[5], etc.

A direct consequence of the additional symmetry is that the two-level JC model exhibits
two linearly independent conserved operators, i.e. the Hamiltonian and the operator counting
the total number of excitations. As the model has two degrees of freedom (the electromagnetic
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photon mode and the two-level system), the model is integrable by definition [6], and supports
a Bethe Ansatz product wavefunction [7]. This result can be generalized to general (2s + 1)-
level systems, also referred to as Tavis-Cummings models [8], or a collections of inequivalent
(2s + 1)-level systems interacting via a single mediating bosonic mode, called the Dicke model
[9]. The integrability of the Dicke model has been established first by Gaudin [7], by means of an
infinite dimensional Schwinger representation of the central spin in the Gaudin magnet. Later,
the full set of conserved charges of the Dicke model has been derived by Dukelsky et. al. [10],
by mapping one of the su(2) quasispin copies of the Richardson-Gaudin conserved charges onto
the bosonic mode [11]. As a Bethe Ansatz integrable model, the conserved charges and Bethe
Ansatz state of the Dicke model can also be obtained from the Algebraic Bethe Ansatz method
[12], however a direct and simplified derivation of the Bethe-Ansatz state with the corresponding
Bethe equations solution is feasible using a commutator scheme [13].

For the derivation of the conserved charges of the Dicke model from those of the Richardson-
Gaudin model [7, 10], a contraction of one of the quasispin algebras in the model was required.
This contraction maps the su(2) quasispin directly onto a bosonic Heisenberg-Weyl algebra
hw(1). Recently, it has been shown how the Bethe Ansatz states in the Richardson-Gaudin (RG)
solution [14, 15] of the reduced Bardeen-Cooper-Schriefer (BCS) Hamiltonian for conventional
superconductivity [16] can be connected adiabatically to a product state of generalized bosons
[17] employing a pseudo deformation of the quasispin algebra. The product structure of the Bethe
Ansatz state is reminiscent of the projected BCS approximation, in which the superconducting
state is approximated by a condensate of collective Cooper pairs [16, 18]. However, in general
the RG variables (or rapidities) parametrizing the generalized quasispin creation operators in
the Bethe Ansatz state differ from each other, which is not reconcilable with the concept of a
true condensate. The pseudo deformation maps the hard-core bosonic su(2) quasispin algebra
of the BCS pairing Hamiltonian into a genuinely bosonic hw(1) by means of a continuous
pseudo-deformation parameter. The reduced BCS Hamiltonian remains integrable along the
path of deformation, allowing for an adiabatic and injective mapping of the exact Bethe Ansatz
states into a condensate of (orthogonal) bosonic modes [19]. Accordingly, the coupled set of
RG equations of integrability reduce to a single decoupled equation, equivalent to the secular
equation of the particle-particle Tamm-Dancoff Approximation (pp-TDA) for the elementary
pairing modes for the reduced BCS Hamiltonian [20]. Reversely, the pseudo deformation enables
one to numerically reconstruct the solution of the coupled set of non-linear RG equations from the
simpler decoupled secular pp-TDA equation, by adiabatically reintroducing the Pauli principle
in the integrable model [17, 21].

In the present manuscript, we will reassess the derivation of the conserved charges of the Dicke
from those of the Richardson-Gaudin (RG) models in the framework of the pseudo-deformed
quasispin algebra. This will enable an adiabatic connection of the Dicke model with the su(2)
based Richardson-Gaudin models. The connection can be made consistently on the level of the
Hamiltonian, the conserved charges, the Bethe Ansatz state, as well as the Bethe (or Richardson-
Gaudin) equations, and sheds light on how the Dicke model can be embedded within the larger
class of Richardson-Gaudin integrable models.

2. Richardson-Gaudin models
The conserved charges of the Richardson-Gaudin [11] models are parametrized by

Ri = S0
i + g

m∑
k 6=i

[Xik
1
2(S†kSi + S†i Sk) + ZikS

0
i S

0
k ] (1)
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with the set of operators {S†i , Si, S0
i } (i = 1 . . .m) spanning a set of m mutually independent

su(2)i quasispin algebras

[S0
i , S

†
k] = δikS

†
k, [S0

i , Sk] = −δikSk, [S†i , Sk] = 2δikS
0
k , (2)

with irreps |si, µi〉, and the X and Z antisymmetric matrices obeying the Gaudin algebra

XijXjk −Xik(Zij + Zjk) = 0, ∀i 6= j 6= k 6= i. (3)

As soon as X and Z span the Gaudin algebra, the conserved charges commute mutually

[Ri, Rj ] = 0, ∀i, j, (4)

and therefore define a RG integrable model. Because the conserved charges (1) are in involution,
they have a common set of eigenstates. These eigenstates are given by means of the Bethe Ansatz

|ψ〉 =

N∏
α=1

(
m∑
i=1

XiαS
†
i

)
|θ〉 (5)

with N the number of excitations, and |θ〉 = ⊗mi=1|si,−si〉 the tensor product of the lowest-
weight irreps of each su(2)i copy. The notation Xiα signifies that the m-dimensional matrix X
has been extended to an (m+N)-dimensional matrix which still obeys the Gaudin algebra (3)
and the antisymmetry condition. For state (5) to be an eigenstate of the conserved charges (1),
the extended Z (and X) matrices need to satisfy the following Bethe Ansatz equations

1 + g

m∑
i=1

Ziαsi − g
∑
β 6=α

Zβα = 0, ∀α = 1 . . . N. (6)

Up to this point, the Gaudin algebra has not been specified, so these results are fully independent
of the particular realisation of X and Z. There are several parametrizations existing in the
literature [22, 11], which can be classified according to the following copy-independent relation

X2
ij − Z2

ij = c, ∀i 6= j, (7)

with c a constant for all i 6= j. The widely used c = 0 parametrization gives rise to the rational
model, whereas the c > 0 and c < 0 are known as the trigonometric and hyperbolic models
respectively1. In the present manuscript, we will mainly focus on the trigonometric case, which
can be parametrized in terms of a set of m real variables {ηi} [11]

Xij =

√
(1 + η2i )(1 + η2j )

ηi − ηj
, Zij =

1 + ηiηj
ηi − ηj

(8)

and c = 1, but equivalent parametrizations exist [10].

1 although the trigonometric and hyperbolic case can be transformed into one another by introducing an imaginary
coupling constant g → ig
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3. Pseudo deformed quasi-spin algebra
The pseudo deformed quasispin algebra su(2) is given by [17]

[S0(ξ), S†(ξ)] = S†(ξ), [S0(ξ), S(ξ)] = −S(ξ), [S†(ξ), S(ξ)] = 2
(
ξS0(ξ) + (ξ − 1)s

)
(9)

with ξ the pseudo-deformation parameter and s the original (ξ = 1) su(2) irrep label. It can
be easily verified that the limits ξ = 1 and ξ = 0 give rise to the original su(2) algebra and
a (unnormalised) bosonic hw(1) algebra respectively. The nomenclature pseudo deformation is
chosen because this algebra can be reduced to a canonical su(2) algebra

[A0(ξ), A†(ξ)] = A†(ξ), [A0(ξ), A(ξ)] = −A(ξ), [A†(ξ), A(ξ)] = 2A0(ξ), (10)

with

A†(ξ) =
1√
ξ
S†(ξ), A(ξ) =

1√
ξ
S(ξ), A0(ξ) = S0(ξ) +

(
1− 1

ξ

)
s (11)

except for the ξ = 0 limit. For this limit, the following operators

b† =
√

1
2sS
†(0), b =

√
1
2sS(0), b†b = S0(0) (12)

close the hw(1) algebra

[b†b, b†] = b†, [b†b, b] = −b [b, b†] = 1. (13)

The representations of the {A†(ξ), A(ξ), A0(ξ)} algebra are labeled by s(ξ) = s(1)/ξ. The
physical interpretation of this is that the effective degeneracy of the quasispin algebra is gradually
increased with decreasing ξ, reaching infinity for the full ξ = 0 contraction limit. It should be
noted that only discrete values of ξn = 2s

n (with n = 2s, 2s + 1, . . .) give rise to unitary irreps.
Nevertheless, this is not an obstacle because the theory of RG integrability does not depend
on matrix representations (with integer dimensions), and the parameter ξ can be regarded as
a continuous variable. This is illustrated by the following construction. Because the set of
generators {A†(ξ), A(ξ), A0(ξ)} span an su(2) algebra, the following set of conserved charges are
equally in involution

Ri(ξ) = A0
i (ξ) + gξ

m∑
k 6=i

[Xik
1
2(A†k(ξ)Ai(ξ) +A†i (ξ)Ak(ξ)) + ZikA

0
i (ξ)A

0
k(ξ)], (14)

provided the matrices X and Z fulfill the Gaudin algebra (3). Note that the coupling constant
g in eq. (1) has been renormalized as gξ. The Bethe Ansatz state

|ψ〉 =

N∏
α=1

(
m∑
i=1

XiαA
†
i (ξ)

)
|θ〉 (15)

is again an eigenstate of the conserved charges (14) if the pseudo-deformed RG equations

1 + g

m∑
i=1

Ziαξsi(ξ)− gξ
∑
β 6=α

Zβα = 0, ∀α = 1 . . . N, (16)

are solved. Although the irrep labels s(ξ) approach infinity for ξ → 0, the value of ξs(ξ) remains
constant over the range ξ ∈ [0, 1], so limξ→0[ξs(ξ)] = s. Consequently, the problem of solving
the set of pseudo-deformed RG equations (16) is perfectly well defined for any value of the
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parameter ξ ∈ [0, 1], and is not restricted to discrete values ξn = 2s
n for unitary irreps. The

ξ → 0 limit offers a particular case, because the conserved charges (up to a diverging constant)
become purely bosonic

Ri(ξ = 0) = b†ibi + g
m∑
k 6=i

[Xik
√
sisk(b

†
ibk + b†kbi)− Zik(sib

†
kbk + skb

†
ibi)] (17)

and the pseudo-deformed RG equations become completely decoupled

1 + g
m∑
i=1

Ziαsi = 0, ∀α = 1 . . . N, (18)

which is equivalent to a set of independent secular equations of the pp-TDA. This construction
forms the backbone of the numerical RG solver method introduced in [17, 21]. In this approach,
the RG equations are solved in the tractable full contraction limit (18), and are then adiabatically
brought into the original form (6) by tuning ξ → 1.

4. Dicke model derived from Richardson-Gaudin models
The pseudo-deformation in the previous section was used to transform all su(2)i copies (i ∈
[1 . . .m]) in the system into a bosonic hw(1)i. Because the JC and Dicke models contain only
one bosonic mode, it would be interesting to see whether an equivalent scheme can be used to
obtain the Dicke model from the ⊗mi=0su(2) RG systems by deforming a single quasispin copy.
Denote this special copy by i = 0, and consider the conserved charge

R0(ξ) = A0
0(ξ) + g

m∑
k 6=0

[12X0k(A
†
0(ξ)Sk + S†kA0(ξ)) + Z0kA

0
0(ξ)S

0
k ]. (19)

In contrast to the pseudo-deformed conserved charges (14), the coupling constant will be

renormalized as g =
√

2ξ
s0G2

G2

~ω , with G a finite, ξ-independent, constant and ~ω the energy

of the electromagnetic field. The other conserved charges are given by

Ri(ξ) = S0
i + g

∑m
k 6=0,i[

1
2Xik(S

†
i Sk + S†kSi) + ZikS

0
i S

0
k ]

+g[12Xi0(S
†
iA0(ξ) +A†0(ξ)Si) + Zi0A

0
0(ξ)S

0
i ]. (20)

From here on, we will employ the trigonometric realization (8) of the Gaudin algebra (3).
Without loss of generality, the X0k and Z0k matrix elements can be evaluated in the η0 → ∞
limit, giving rise to the parametrization

X0k = lim
η0→∞

√
1+η20
√

1+η2k
η0−ηk =

√
1 + η2k, Z0k = lim

η0→∞
1+η0ηk
η0−ηk = ηk. (21)

Using this realization and the definition of the Gaudin algebra (3), it is straightforward to show
that

Xik =
Xi0X0k

Zi0 + Z0k
=

√
1 + η2i

√
1 + η2k

ηi − ηk
, Zik =

√
X2
ik − 1 =

1 + ηiηk
ηi − ηk

, (22)

which is indeed a standard trigonometric parametrization (8) of the Gaudin algebra (3). The set

of parameters {ηk} can be chosen freely, so we renormalize them as ηk = −
√

ξ
2s0G2 εk, with {εk}
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a set of free, ξ-independent, variables. It is noteworthy that the X0k and Z0k matrix elements
take the form

X0k = 1 + ξ
4s0G2 ε

2
k +O(ξ2), Z0k = −

√
ξ

2s0G2 εk, (23)

in the ξ → 0 contraction limit, which is related to the parametrization proposed by Dukelsky et.
al. [10] in their derivation of the Dicke model. Substituting the expressions of X0k and Z0k (eqs.
(21)) in the conserved charge, and taking the proper ξ → 0 limit, one obtains the Hamiltonian
of the Dicke model (up to a divergent constant)

HDicke = ~ωR0(ξ → 0) = ~ωb†b+

m∑
k=1

εkS
0
k +G

m∑
k=1

(b†Sk + S†kb), (24)

where the i = 0 notation has been omitted for the bosonic operators. A similar procedure leads
to the other conserved charges

~ωRi(ξ → 0) = (~ω − εi)S0
i +

m∑
k 6=i

2G2

εk − εi
[12(S†i Sk + S†kSi) + S0

i S
0
k ]−G(S†i b+ b†Si). (25)

To obtain an expression for the Bethe Ansatz state in the contraction limit, one needs a
parametrization of the matrix elements X0α and Xkα. The former can be chosen according to

eqs. (21) with ηα = −
√

ξ
2s0G2xα , from which the latter can be derived

Xkα =
Xk0X0α

Zk0 + Z0α
=

√
1+η2k

√
1+η2α

ηk−ηα . (26)

Substituting these parametrisations for X0α and Xkα into the Bethe Ansatz state eq. (5), and
taking the ξ → 0 limit, one obtains

|ψ〉 =

(
2s0
ξ

)N
2

N∏
α=1

(
b† −G

m∑
k=1

S†k
εk − xα

)
|θ〉, (27)

where the factor (2s0ξ )
N
2 can be absorbed by the normalization of the state.

Finally, the RG equations for the Dicke model can be obtained likewise. Starting from the
RG equations (6) with the i = 0 quasispin copy replaced by a pseudo deformed su(2),

1 + gZ0αs0(ξ) + g

m∑
k=1

Zkαsk − g
∑
β 6=α

Zβα = 0, ∀α = 1 . . . N. (28)

and substituting the proper expressions for Zkα and Zβα

Zkα =
1 + ηkηα
ηk − ηα

, Zβα =
1 + ηβηα
ηβ − ηα

, (29)

we obtain the RG equations for the Dicke Hamiltonian

(~ω − xα)− 2G2
m∑
k=1

sk
εk − xα

+ 2G2
N∑
β 6=α

1

xβ − xα
= 0, ∀α = 1 . . . N. (30)
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5. Conclusions
In conclusion, we have derived the RG integrability of the Dicke model in the contraction limit
of a single pseudo deformed quasispin algebra copy in the ⊗i=0su(2)i RG system. In addition to
the Dicke Hamiltonian, the additional conserved charges for the integrability have been obtained,
as well as the correct form for the Bethe Ansatz state and the RG equations which the rapidities
in the Bethe Ansatz need to satisfy. It would be interesting to investigate how the Bethe Ansatz
eigenstates of the trigonometric RG Hamiltonian are adiabatically connected to the Bethe Ansatz
eigenstates of the Dicke model. This will constitute the subject of future investigations.
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