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Abstract. We present an attempt of classification of special functions in terms of a set of
formal properties mainly based on their “ladder symmetry” algebras. Thus, the “algebraic
special functions” are defined. We discuss, here, the case related with the Jacobi polynomials.
We construct the relevant objets associated with the corresponding symmetry group SU(2, 2):
generators, subgroups, invariants and representations. Harmonic analyses based on significant
subgroups for the Jacobi functions are developed.

1. Introduction
In a recent series of papers [1, 2, 3] we have revisited the connection between special functions,
in particular the classical orthogonal polynomials, with Lie groups, differential equations and
Hilbert spaces. The revision started from the Hermite polynomials in the quantum harmonic
oscillator to arrive to the study of the symmetries of quantum systems where, in many cases,
orthogonal polynomials are involved in the construction of bases of L2 spaces [4, 5, 6, 7].

Our approach is based on ideas of Wigner (symmetry group) [8, 9] and of Truesdell (“functions
with additional properties”) [10]. A lot of work has been done in this direction since the seminal
book by Wigner, in particular we can mention Vilenkin [11, 12, 13] and Miller [14, 15]. Both
have made an impressive work in the study of the symmetries of special functions.

Starting from Miller, Vilenkin and Truesdell we have defined the “algebraic special functions”
(ASF) as those functions with the following set of formal properties: they admit a set of ladder
operators that span a Lie algebra G =Lie(G), they support a unitary irreducible representation
(UIR) of G and they are bases of Hilbert spaces.

The main facts associated to these ASF are: the defining second order differential equation of
the corresponding family of ASF can be obtained by the factorization method [16, 17] from the
Casimir of each possible subalgebra of G or from the Casimir of the full algebra G associated to
a specific representation; the set of operators acting on the Hilbert space is homomorphic to the
Universal Enveloping Algebra (UEA) built on G; and the exponential map defines all possible
changes of bases in the corresponding Hilbert space. So, they are well adapted to the quantum
mechanics framework.
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We have got some interesting results that we can summarize as follows:

(i) for Hermite, Laguerre and Legendre polynomials we have obtained symmetry Lie groups of
rank one. Thus, the Heisenberg-Weyl group H(1) for algebraic Hermite functions

Kn(x) =
e−x

2/2√
2nn!
√
π
Hn(x), ∀n ∈ N,

where Hn(x) are the Hermite polynomials. However the Lie group SU(1, 1) describes the
Legendre polynomials Pn(x) and also the algebraic Laguerre functions

Mn(x) = e−x/2 Ln(x), ∀n ∈ N,

where Ln(x) are the Laguerre polynomials [2].

(ii) Groups of rank two are obtained for the associated Legendre polynomials, spherical

harmonics, Gegenbauer polynomials and Jacobi polynomials J
(α,α)
n (x). For instance, for the

associated Legendre polynomials Pml (x) we get the algebraic associated Legendre functions

Tml (x) =

√
(l −m)!

(l +m)!
Pml (x), l ∈ N, m ∈ Z, 0 ≤ |m| ≤ l,

that as well as the spherical harmonics support a particular UIR of SO(3, 2) [1].

We present in this paper a case whose symmetry group has rank three: the Jacobi polynomials

J
(α,β)
n (x). As we have noted in the previous cases the rank of the group is related with the

number of independent parameters labeling the orthogonal polynomials. The idea is to connect
an operator to each label, such that the polynomials are eigenvectors of it. These operators will
span the Cartan subalgebra of the corresponding symmetry Lie algebra.

Some of the results described here have been obtained by Miller many years ago [18, 19]
in connection with the wave equation in four dimensions and the Gaussian hypergeometric

functions 2F1(α, β, γ;x), generalization of the Jacobi polynomials J
(α,β)
n (x) The conformal group

SU(2, 2) found by Miller is recovered here. Later, in Ref. [20] Floreanini and Vinet construct,
following the approach of Miller and the results of Kalnins and Miller [21], a representation
of the euclidean algebra in four dimensions e(4) supported by functions of three variables that
include the Jacobi polynomials. In these cases the problem of the coexistence of variations of
the parameters α, β, γ, n and derivatives in the variable x was solved in a creative manner by
means of the introduction of new variables and new functions that include the hypergeometric
functions and the Jacobi polynomials, respectively. Thus, the ladder operators act on the space
of these auxiliary functions instead on the space of the hypergeometric functions or of Jacobi
polynomials where only the corresponding recurrence relations are defined.

In our approach we realize all recurrence relations as true operators in the vector space

of Jacobi polynomials J
(α,β)
n (x) associating the parameters n, α, β to operators, that have the

parameters as eigenvalues. We can thus define the operators in the space of the corresponding
orthogonal polynomials and describe the algebraic structure in the vector space of these
polynomials.

The realization of the ladder operators acting on the Jacobi polynomials allows us to construct
objects associated to a Lie group: generators, invariants, subgroups, universal enveloping
algebra, representations, etc.

Different subspaces of the Jacobi functions are found to support unitary irreducible
representations of subgroups of SU(2, 2). In particular, it looks interesting for physical
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applications that the SU(2,2)-UIR can be splitted in two subrepresentations dividing the Jacobi
functions in bosonic (SO(3, 2)) and fermionic (Spin(3, 2)) ones, stressing the relation of the
algebraic Jacobi functions (AJF) with the Wigner dj-matrices [22, 23].

We also present harmonic analysis approaches based on the groups SU(1, 1), SO(3, 2) and
SU(2, 2), respectively. In this way subsets of AJF are bases of Hilbert spaces. The operators
acting on the associated spaces of square integrable functions belong to the corresponding
universal enveloping algebra.

2. Algebraic Jacobi functions

The Jacobi polynomials, J
(α,β)
n (x), are polynomials of degree n ∈ N with α, β ∈ R and

α > −1, β > −1 [24, 25]. Firstly we take three new (discrete) variables (j,m, q) instead of
(n, α, β) to label them. The relation between these two set of parameters is

j := n+
α+ β

2
, m :=

α+ β

2
, q :=

α− β
2

.

Next we include a x-depending factor related with the integration measure of the Jacobi
polynomials. Hence we obtain the called “algebraic Jacobi functions” (AJF)

Jm,qj (x) :=

√
Γ(j +m+ 1) Γ(j −m+ 1)

Γ(j + q + 1) Γ(j − q + 1)

(
1− x

2

)m+q
2
(

1 + x

2

)m−q
2

J
(m+q,m−q)
j−m (x). (1)

For our group-theoretical purposes we impose to (j,m, q) that

j ≥ |m|, j ≥ |q|, 2j ∈ N, j −m ∈ N, j − q ∈ N, (2)

resulting that (j,m, q) are all together integers or half-integers. The conditions (2) rewritten
in terms of the parameters (n, α, β) are different from the original ones. However the change
is motivated by the introduction of the normalization inside the functions and by the algebra
structure requirements (2). Moreover the AJF verify that Jm,qj (x) = 0 for j < |q| (see eq. (1))

and they can be extended to j < |m| by considering a limit procedure

Ĵm,qj (x) := lim
ε→0
Jm+ε,q
j (x) =

{
Jm,qj (x) ∀ (j,m, q) verifying conditions (2)

0 j < |m|
.

Henceforth we remove the hat to the AJF Ĵm,qj (x). They present additional symmetries hidden
inside the Jacobi polynomials:

Jm,qj (x) = J q,mj (x), Jm,qj (x) = (−1)l−m Jm,−qj (−x),

Jm,qj (x) = (−1)l−q J −m,qj (−x), Jm,qj (x) = (−1)m+q J −m,−qj (x) .

The AJF for m and q fixed verify the orthogonality relation∫ 1

−1
Jm,qj (x) (j + 1/2) Jm,qj′ (x) dx = δj j′ (3)

and the completeness relation

∞∑
j=sup(|m|,|q|)

Jm,qj (x) (j + 1/2) Jm,qj (y) = δ(x− y). (4)
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The differential Jacobi equation satisfied by the Jacobi polynomials J
(α,β)
n (x)[

(1− x2) d
2

dx2
− ((α+ β + 2)x+ (α− β))

d

dx
+ n(n+ α+ β + 1)

]
J (α,β)
n (x) = 0

can be rewritten in terms of the AJF Jm,qj (x)[
−(1− x2) d2

dx2
+ 2x

d

dx
+

2 m q x+m2 + q2

1− x2
− j(j + 1)

]
Jm,qj (x) = 0 , (5)

where the symmetry under the interchange m⇔ q is evident.
An important fact is that the AJFs (1) are essentially the elements of the Wigner dj-rotation

matrices [22, 23] after the change of variable x = cosβ. Indeed, the relation

djqm(β) =

√
(j +m)! (j −m)!

(j + q)! (j − q)!
(sinβ/2)m−q (cosβ/2)m+q J

(m−q,m+q)
j−m (cosβ) (6)

allows to write
djqm(β) = Jm,−qj (cosβ).

3. Symmetry algebras of the algebraic Jacobi functions
Let us start by introducing, not only the operators X and Dx of the configuration space

X f(x) = x f(x), Dx f(x) = f ′(x), [X,Dx] f(x) = −f(x),

but three other diagonal operators J , M and Q on the AJF

J Jm,qj (x) = j Jm,qj (x), M Jm,qj (x) = m Jm,qj (x), QJm,qj (x) = q Jm,qj (x). (7)

The procedure consists in transforming the differential-difference equations and difference
equations verified by the Jacobi polynomials (that one can find in Refs. [24, 25, 26]) in terms of
ladder operators. Since there are many recurrence relations, we start considering the equations
(18.9.15) and (18.9.16) of Ref. [24]

d

dx
J (α,β)
n (x) =

1

2
(n+ α+ β + 1) J

(α+1,β+1)
n−1 (x) ,

d

dx

[
(1− x)α(1 + x)βJ (α,β)

n (x)
]

= −2(n+ 1)(1− x)α−1(1 + x)β−1 J
(α−1,β−1)
n+1 (x),

that in terms of the AJF become

A± Jm,qj (x) =
√

(j ∓m) (j ±m+ 1) Jm±1, qj (x), (8)

where

A± := ±
√

1−X2Dx +
1√

1−X2
(XM +Q). (9)

By inspection only the parameter m of AJF changes and varies in ±1. Both operators A±
together with A3 := M close a su(2) Lie algebra (denoted by suA(2)) that commutes with J
and Q

[A3, A±] = ±A± , [A+, A−] = 2A3.
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In this way the set of AJF such that 2j ∈ N, j − m ∈ N and −j ≤ m ≤ j support the
(2j + 1)-dimensional UIR of the Lie group SUA(2) independently from the value of q.

Taking into account the differential realization (9) of A± and the Casimir, CA, of suA(2)

[CA − J(J + 1)] Jm,qj (x) ≡
[
A2

3 +
1

2
{A+, A−} − J(J + 1)

]
Jm,qj (x) = 0 , (10)

we recover the Jacobi differential equation (5) in operator terms[
−(1−X2)D2

x + 2XDx +
1

1−X2
(2XMQ+M2 +Q2)− J(J + 1)

]
Jm,qj (x) = 0, (11)

which can also be obtained by two factorized equations that reproduce the Jacobi equation

[A+A− − (J +M) (J −M + 1)] Jm,qj (x) = 0 ,

[A−A+ − (J −M) (J +M + 1)] Jm,qj (x) = 0 .
(12)

Note that eqs. (10) and (12) are particular cases of a general rule: the defining differential
equation can be recovered applying to the ASF the second order Casimir operator of any involved
algebra and sub-algebra as well as any diagonal product of ladder operators.

Now taking into account the symmetry m⇔ q of Jm,qj (x), we construct the algebra suB(2) of
operators B±, B3, that change q leaving j and m unchanged, from A± and A3 by the interchange

(A±, A3)
M⇔Q⇐⇒ (B±, B3).

Obviously the counterparts of the expressions (8)–(12) for B±, B3, are obtained by the changes
m⇔ q and M ⇔ Q in these expressions.

Since the operators A± and A3 commute with B± and B3 we get, on the space of Jm,qj (x)
with j fixed, the symmetry algebra

suA(2)⊕ suB(2).

So, the set of Jm,qj (x) (for fixed j and −j ≤ m ≤ j, −j ≤ q ≤ j) determines a UIR of

SUA(2)⊗ SUB(2).

4. su(1, 1)-ladder operators
Proceeding in a similar way, from the remaining difference and differential-difference relations
we can obtain eight new infinitesimal generators. In a first step we construct two ones (C± such

that C†± = C∓) that determine a su(1, 1) algebra (suC(1, 1)):

C+ := +
(1 +X)

√
1−X√

2
Dx −

1√
2(1−X)

(X (J + 1)− (J + 1 +M +Q)) ,

C− := − (1 +X)
√

1−X√
2

Dx −
1√

2(1−X)
(X J − (J +M +Q)) .

(13)

They act on the space {Jm,qj } (for j,m, q integer and half-integer such that j ≥ |m|, |q|)

C+ Jm,qj (x) =
√

(j +m+ 1)(j + q + 1) Jm+1/2, q+1/2
j+1/2 (x),

C− Jm,qj (x) =
√

(j +m)(j + q) Jm−1/2, q−1/2j−1/2 (x).
(14)
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They change all the parameters (j,m, q) by ±1/2. Moreover

[C+, C−] = −2C3, [C3, C±] = ±C±, C3 := J +
1

2
(M +Q) +

1

2
.

The Casimir CC of suC(1, 1) is

CCJm,qj (x) ≡
[
C2
3 −

1

2
{C+, C−}

]
Jm,qj (x) =

1

4

[
(m− q)2 − 1

]
Jm,qj (x).

The Jacobi equation (11) can be derived from CC[
CC −

1

4
(M −Q)2 +

1

4

]
Jm,qj (x)

≡
[
C2
3 − 1

2{C+, C−} − 1
4 (M −Q)2 + 1/4

]
Jm,qj (x) = 0,

(15)

and also from
[C+C− − (J +M) (J +Q)] Jm,qj (x) = 0,

[C−C+ − (J + 1 +M) (J + 1 +Q)] Jm,qj (x) = 0.

Analyzing (15) we see that since (m − q) = 0,±1,±2,±3, · · · the IR of su(1, 1) with Casimir
CC = (m− q)2/4− 1/4 = −1/4, 0, 3/4, 2, 15/4, · · · are obtained. Hence, the set of AJF supports
many infinite-dimensional UIR of the discrete series of SUC(1, 1) [27].

We can find six more ladder operators, D±, E±, F±, whose explicit differential expressions
are easily obtained from those of C± (13) according to the changes suggested by

D±(X,Dx, J,M,Q) = C±(−X,−Dx, J,M,−Q),

E±(X,Dx, J,M,Q) = C±(−X,−Dx, J,−M,Q),

F±(X,Dx, J,M,Q) = −C±(X,Dx, J,−M,−Q).

(16)

All the relations where the operators C± are involved can be rewritten for these new operators
taking into account (16).

The generators A±, B±, C±, D±, E±, F±, J,M,Q close the Lie algebra su(2, 2) [3]. Its
quadratic Casimir has the form

Csu(2,2) = 1
2 ({A+, A−}+ {B+, B−} − {C+, C−} − {D+, D−} − {E+, E−} − {F+, F−})

+ 2J(J + 1) +M2 +Q2 +
1

2
≡ −3

2
.

Once more taking into account the differential realization of the operators involved in the Casimir
we recover the Jacobi equation.

The AJF support a UIR of the group SU(2, 2) with the value -3/2 of Csu(2,2) such that the
integer and half-integer values of (j,m, q) are putted all together.

A more detailed discussion can be found in Ref. [3]

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012023 doi:10.1088/1742-6596/597/1/012023

6



5. Symmetries for fermion and boson states
The operators A± (B±) change only a label m (q) of±1 but the operators C±, D±, E±, F± change
all the three labels (j,m, q) by ±1/2. Hence, we can obtain operators that only change j by
±1 and leave the other two parameters invariant by composing the action of pairs of operators,
for instance F±C± (or C±F±, D±E±, E±D±). They are second order differential operators but
they can be reduced to first order ones when act on Jm,qj by means of the Jacobi equation.

We have seen that the Jm,qj have j ≥ |m| and j ≥ |q|, but now we have to consider separately
specific values of m and q.

Thus we define two conjugate hermitian operators

K+ := F+C+
1√

(J + 1)2 −Q2
, K− := F−C−

1√
J2 −Q2

,

that can be written as

K+ :=

(
−(1−X2) Dx +X (J + 1) +

MQ

J + 1

)
J + 1√

(J + 1)2 −Q2
,

K− :=

(
(1−X2) Dx +X J +

MQ

J

)
J√

J2 −Q2
, (17)

with the condition that they act on Jm,qj with j ≥ |m| > |q|. Their explicit action on Jm,qj is

K+ Jm,qj (x) =
√

(j + 1)2 −m2 Jm,qj+1 (x),

K− Jm,qj (x) =
√
j2 −m2 Jm,qj−1 (x).

The operators K± together with K3 := J + 1/2 close the Lie algebra suK(1, 1). Hence
{Jm,qj ; m, q fixed , j ≥ |m| > |q|} is a basis of the SU(1, 1)–UIRs with Casimir CK = m2 − 1/4.

In the case |m| < |q| it is enough to interchange M ⇔ Q (or m⇔ q) in K±. However, when
|m| = |q| the action of K− is not well defined in eq. (17) for j = |m| = |q|, but we can extend
its definition to this case by considering the limit

K− := lim
ε→0

[(
(1−X2)Dx +X J +

(M + ε)(Q+ ε)

J

)
J√

J2 − (Q+ ε)2

]
.

In any case the Jm,qj determine, for fixed m and q, a UIR of SU(1, 1). Thus, if |m| ≥ |q| we

have eqs. (5) with j = |m|, |m|+1, |m|+2 . . . and Casimir CK = m2−1/4, while for |m| < |q| we
have to exchange q and m everywhere. These SU(1, 1)–UIRs contain only states with integer
or half-integer values of its labels. From a physical point of view the Wigner dj-matrices (6) do
not mix integer and half-integer spins , i.e. bosons and fermions.

These SU(1, 1) groups cannot, in general, be extended to larger groups except when q = 0

or m = 0. Then, the Jm,0j (with j,m ∈ Z and j ≥ |m|) are related to the associated Legendre

polynomials Pαn+α and support a UIR of SO(3, 2). In this case we get not only K± but also

A± that allow us to obtain the whole algebra so(3, 2) described in [1]. For J 0,q
j the results are

similar.
The “fermions” states {Jm,±1/2j } and {J ±1/2,qj } are related to the same algebra so(3, 2) but

to a representation of its covering group Spin(3, 2) [28] with all the parameters half-integer.
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6. L2–functions spaces and Jm,qj (x)

It is well known that the orthogonal polynomials are bases on L2–functions spaces [29]. In this
case according to the relations (3) and (4) the set {Jm,qj (x) | m, q fixed}∞j=sup(|m|,|q|) is a basis of

the L2–functions defined in the interval E = (−1, 1). Moreover the AJF are transition matrices
between continuous and discrete bases in representation spaces.

Effectively, let us consider the simplest case. From expressions (3) and (4) we are able
to consider j and x as conjugate variables on the same space after fixed m and q. Let
{|j, (m, q)〉; m, q fixed, j = sup(|m|, |q|)} be the set of eigenvectors of K3 and CK

K3 |j, (m, q)〉 = (j + 1
2) |j, (m, q)〉,

CK |j, (m, q)〉 = (m2 − 1
4) |j, (m, q)〉.

(18)

The action of K± on these vectors gives

K+ |j, (m, q)〉 =
√

(j + 1)2 −m2 |j + 1, (m, q)〉,

K− |j, (m, q)〉 =
√
j2 −m2 |j − 1, (m, q)〉.

(19)

So the set {|j, (m, q)〉} is a basis of the space support of the IUR of SU(1, 1) determined by
expressions (18) and (19), i.e.

〈j, (m, q)|j′, (m, q)〉 = δj j′ ,

∞∑
j=sup(|m|,|q|)

|j, (m, q)〉 〈j, (m, q)| = I. (20)

The orthogonality and completeness of {|j, (m, q)〉} (20) and the AJF allows us to define the
vectors

|x, (m, q)〉 :=

∞∑
j=sup(|m|,|q|)

|j, (m, q)〉
√
j + 1/2 Jm,qj (x)

which are a basis of the space E = (−1, 1)

〈x, (m, q)|x′, (m, q)〉 = δ(x− x′),
∫ +1

−1
|x, (m, q)〉 dx 〈x, (m, q)| = I .

This implies that the {Jm,qj (x)} are the transition matrices between the two bases, i.e.

Jm,qj (x) =
1√

j + 1/2
〈x, (m, q)|j, (m, q)〉 =

1√
j + 1/2

〈j, (m, q)|x, (m, q)〉 ,

and

|j, (m, q)〉 =

∫ +1

−1
|x, (m, q)〉

√
j + 1/2 Jm,qj (x) dx .

Note that there is a basis associated to each triple (m, q, g ∈ SU(1, 1)).

The case of two discrete variables, (j,m) or (j, q), is related to the group SO(3, 2) and has
been discussed in [1], so it will be not reconsidered here.

The case of three variables (j,m, q) corresponds to SU(2, 2) and now both m and q are
modified by the group action. Like in the previous case let us consider the set of eigenvectors
of J,M,Q and also of the Casimir operators CA, CB, CC , CD, CE and CF

{|j,m, q〉 ; m, q ∈ Z/2, j ≥ |m|, j ≥ |q|, j −m ∈ N, j − q ∈ N},
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where Z/2 = {0,±1/2,±1,±3/2, . . .}. Hence the action, for instance, of the operators C± on
these vectors is easy to compute obtaining

C+|j,m, q〉 =
√

(j +m+ 1)(j + q + 1) |j + 1/2,m+ 1/2, q + 1/2〉,

C−|j,m, q〉 =
√

(j +m)(j + q) |j − 1/2,m− 1/2, q − 1/2〉,

and similarly for the other generators of su(2, 2). These vectors support the IUR of SU(2, 2)
above described. So

〈j,m, q|j′,m′, q′〉 = δj j′ δmm′ δq, q′ ,
∑
j,m,q

|j,m, q〉 〈j,m, q| = I.

We can define a new set of vectors

{|x,m, q〉 ; x ∈ E = (−1, 1) ⊂ R, q ∈ Z/2, m− q ∈ Z}

in terms of the vectors |j,m, q〉 and the AJF Jm,qj (x) by

|x,m, q〉 :=
∞∑

j=sup(|m|,|q|)

|j,m, q〉
√
j + 1/2 Jm,qj (x).

Orthonormality and completeness are easily obtained

〈x,m, q|x′,m′, q′〉 = δ(x− x′) δmm′ δq q′ ,
∑
m,q

∫ +1

−1
|x,m, q〉 dx 〈x,m, q| = I.

The space in this case can be identified as E×Z×Z/2 and is the direct sum of the spaces Em,q
(associated to the configuration space E = (−1, 1) ⊂ R) with m and q fixed,

E× Z× Z/2 =
⋃

m−q∈Z

⋃
q∈Z/2

Em,q,

where Z × Z/2 is related to the set of pairs {(m − q, q)} since m and q are together integer or
half-integer.

The {Jm,qj (x)} are the transition matrices between the two bases {|j,m, q〉} and {|x,m, q〉}

Jm,qj (x) =
1√

j + 1/2
〈x,m, q|j,m, q〉 =

1√
j + 1/2

〈j,m, q|x,m, q〉 .

Like in Ref. [1, 2] the role of the AJF as transition matrices reflects the fact that the algebra
generators can be seen as differential operators in E × Z × Z/2 or algebraic operators in the
space of labels N/2×N×N related to the set of triplets {(j, j−m, j− q)}. This allows to make
explicit the Lie algebra structure in contrast with Ref. [11, 12, 14].

An arbitrary vector |f〉 ∈ L2(E,Z,Z/2) can be written as

|f〉 =

∞∑
m,q=−∞

∫ +1

−1
dx |x,m, q〉 fm,q(x) =

+∞∑
m,q=−∞

∞∑
j=sup(|m|,|q|)

|j,m, q〉 fm,qj ,
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where

fm,q(x) = 〈x,m, q|f〉 =

∞∑
j=sup(|m|,|q|)

√
j + 1/2 Jm,qj (x) fm,qj ,

fm,qj = 〈j,m, q|f〉 =

∫ +1

−1
dx
√
j + 1/2 Jm,qj (x) fm,q(x) .

So, the L2–functions, fm,q(x), defined on (E,Z,Z/2) can be developped as

fm,q(x) =

∞∑
m,q=−∞

∞∑
j=sup(|m|,|q|)

√
j + 1/2 Jm,qj (x) fm,qj .

Note that since {Jm,qj } is a basis of a UIR of SU(2, 2) and, at the same time, a basis of the

L2–functions defined on (E,Z,Z/2) then L2(E,Z,Z/2) supports the same UIR of SU(2, 2). This
implies that every change of basis in L2(E,Z,Z/2) is related to an element g of SU(2, 2) and
that the operators acting on L2(E,Z,Z/2) can be written inside the UEA[su(2, 2)].

7. Conclusions
The algebraic special functions are relevant since they constitute a bridge between second order
differential equations in one dimension and Lie algebras. Moreover they allow to establish a
homorphism between the UEA of the corresponding symmetry Lie algebra and the vector space
of the operators defined on the L2–functions. In particular the algebraic Jacobi functions coincide
with the Wigner dj-matrices, which play an important role in Quantum Mechanics. This fact
enhances the interest of the algebraic special functions in physical applications.
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