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Abstract. We study the Lp norm of the orthogonal projection from the space of quaternion
valued L2 functions to the closed subspace of slice L2 functions.

The aim of this short note is to study the orthogonal projection Π from the space of quaternion
valued L2 functions to its closed subspace of slice L2 functions. In particular, to compute the
norm of the projection operator we will first show that we can write Π in terms of a quaternionic
slice Poisson kernel.

Let H = R + Ri + Rj + Rk denote the non commutative 4-dimensional real algebra of
quaternions and let B = {q ∈ H : |q| < 1} be the unit ball in H. Its boundary ∂B contains
elements of the form q = eIt, I ∈ S, t ∈ R, where S = {q ∈ H : q2 = −1} is the two dimensional
sphere of imaginary units in H. We endow ∂B with the measure dΣ

(
eIt
)

= dσ(I)dt, which is
naturally associated with the Hardy space H2(B) of the slice regular functions on B, see [1]. We
here normalize the measures so to have Σ(∂B) = σ(S) = 1. The functions we are concerned with
here satisfy algebraic conditions and size conditions. A function f : ∂B → H is a slice function
if for any I, J ∈ S

f(eJt) =
1

2

[
f(eIt) + f(e−It)

]
+
JI

2

[
f(e−It)− f(eIt)

]
. (1)

That is, slice functions are affine in the S variable:

f(eJt) = a(t) + Jb(t), (2)

where a, b : ∂B→ H are functions depending on t alone. Condition (2) has an algebraic nature.
Equation (1) also provides a formula to extend a function fI defined on a slice ∂BI = ∂B∩(R+RI)
to a slice function f := ext(fI) defined on the entire sphere ∂B.

Slice functions were introduced in the more general setting of real alternative algebras by
Ghiloni and Perotti in [5]. A notable class of slice functions is provided by the restriction to the
unit sphere in H of slice regular functions. Such functions have been object of intensive research
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since the seminal work by Gentili and Struppa [3]. A concrete example is given by converging
power series of the form eIt 7→

∑
n∈Z e

Intan, with quaternionic coefficients an.
We refer to [4] for results concerning slice regular functions and to [2] for functional analysis

results in the quaternionic setting.
We denote by Ls = Ls(∂B) the class of the measurable slice functions on ∂B, which has a

natural structure of right linear space on H.
We will denote by Lp = Lp(∂B), 1 ≤ p ≤ ∞, the space of the functions ϕ : ∂B→ H such that∫

∂B |ϕ|
pdΣ =: ‖ϕ‖pp < ∞, and let Lps := Lp ∩ Ls. It is not difficult to prove that L2

s is a closed
subspace of L2 (see Proposition 5 below), hence we have an orthogonal projection operator
Π : L2 → L2

s: Π is self-adjoint, surjective, and Π2 = Π.
Let

‖Π‖p,p = sup
L23ϕ6=0

‖Πϕ‖p
‖ϕ‖p

.

Obviously, ‖Π‖2,2 = 1.
Our main goal here is computing the norm of Π : Lp → Lps.

Theorem 1. (i) ‖Π‖2,2 = 1, ‖Π‖∞,∞ = 4
3 .

(ii) Let 2 ≤ p ≤ ∞. Then, ‖Π‖p,p ≤ 2
(
2p−2
3p−2

) p−1
p
.

(iii) If 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1, then ‖Π‖p,p = ‖Π‖q,q.

The general theory implies that Π is a contraction on L2 and the equality in (iii). The
inequality in (ii) gives the right constant for p =∞, but not for p = 2. Finding the exact value
of ‖Π‖p,p for all p’s might shed some light on the geometry of slice regular functions, and we
think it is an interesting open problem. The study presented in this paper began when discussing
some problems related to Preprint [6].

On route to the proof of Theorem 1, we shall write Π as an explicit integral operator.
Let ϕ ∈ L2. The measure dΣ we are considering is the product of the (normalization of

the) standard Lebesgue measure on the unit circle times the standard area element on the two
sphere. Hence, ϕ belongs to the L2 space of the unit circle ∂BI for almost every I ∈ S, and we
can expand ϕ as a power series on almost each slice of the form

ϕ(eIt) =

∞∑
n=−∞

eIntan(I).

The coefficients depend on the imaginary unit I ∈ S.

Proposition 2. Let ϕ ∈ L2. Then the orthogonal projection of ϕ to the space of slice functions
is

Πϕ(eJt) =
∞∑

n=−∞
eJntãn

for any eJt ∈ ∂B, where the coefficients are given by the integral means

ãn =

∫
S
dσ(I)an(I)

for any n ∈ Z.
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Proof. Let f(eIt) =
∑

n∈Z e
Intαn ∈ L2

s. Taking into account that, for any measurable function

g : ∂B→ H,
∫ 2π
π g(eIt)dt =

∫ π
0 g(e−It)dt, which implies that∫

∂B
g(eIt)dΣ(eIt) =

1

2π

∫ 2π

0

∫
S
g(eIt)dσ(I)dt,

we can write

〈f, ϕ〉L2 =
1

2π

∫ 2π

0
dt

∫
S
dσ(I)ϕ(eIt)f(eIt) =

∫
S
dσ(I)

∞∑
n=−∞

an(I)αn

=
∞∑

n=−∞

∫
S
dσ(I)an(I)αn =

∞∑
n=−∞

ãnαn = 〈f, ϕ̃〉L2

where ϕ̃(eJt) =
∑

n∈Z e
Jntãn is a slice function. Hence Πϕ = ϕ̃.

We observe first that functions f in L2
s extend as power series to the interior of the unit ball:

f(reIt) =

+∞∑
n=−∞

r|n|eIntf̂(n), where f̂(n) =
1

2π

∫ π

−π
e−nIsf(eIs)ds is independent of I. (3)

For 0 ≤ r < 1, let P Ir be the Poisson kernel on the unit circle of the complex plane R+RI ⊂ H:

P Ir (t) =
1− r2

|1− reIt|2
=

+∞∑
n=−∞

r|n|eInt.

We point out that P Ir = Pr is independent of the imaginary unit I. In the following Lemma, we
use the notation P Ir to stress the role of the imaginary unit in formula (4).

Lemma 3. For any ϕ ∈ L2, the extension to the interior of B of its projection is given by

Πϕ(reIt) =

∫
∂B
K(reIt, eJs)ϕ(eJs)dΣ(eJs),

where

K(reIt, eJs) =
1

2

[
P Jr (t+ s) + P Jr (t− s)

]
+
IJ

2

[
P Jr (t+ s)− P Jr (t− s)

]
. (4)

Proof. Fix J ∈ S such that the restriction ϕJ of ϕ to ∂BJ belongs to the L2 space of the circle
∂BJ , and consider the harmonic extension of ϕJ to the interior of the disc BJ ,

ϕJ(reJs) =
∞∑

n=−∞
r|n|eJnsan(J).

The coefficients of the projection Πϕ, recalling Proposition 2, are given by

ãn =

∫
S
dσ(J)an(J) =

∫
S
dσ(J)

1

2π

∫ 2π

0
e−Jnsϕ(eJs)ds.
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Hence, for any I ∈ S, t ∈ R,

Πϕ(reIt) =
+∞∑

n=−∞
r|n|eIntãn =

∫
S
dσ(J)

1

2π

∫ 2π

0

+∞∑
n=−∞

r|n|eInte−Jnsϕ(eJs)ds

=

∫
∂B
K(reIt, eJs)ϕ(eJs)dΣ(eJs)

where

K(reIt, eJs) =

+∞∑
n=−∞

r|n|eInte−Jns.

To conclude, notice that K(reIt, eJs) is a slice function with respect to the variable eIt, hence
it can be written as

K(reIt, eJs) =
1

2

(
K(reJt, eJs) +K(re−Jt, eJs)

)
+
IJ

2

(
K(re−Jt, eJs)−K(reJt, eJs)

)
=

1

2

(
+∞∑

n=−∞
r|n|eJn(t−s) +

+∞∑
n=−∞

r|n|eJn(−t−s)

)

+
IJ

2

(
+∞∑

n=−∞
r|n|eJn(−t−s) −

+∞∑
n=−∞

r|n|eJn(t−s)

)

=
1

2

(
P Jr (t− s) + P Jr (−t− s))

)
+
IJ

2

(
P Jr (−t− s)− P Jr (t− s)

)
.

Corollary 4. We have that Πϕ(reIt) = A(r, t) + IB(r, t), where

A(r, t) =
1

2π

∫ π

−π

1

2
[Pr(t+ s) + Pr(t− s)]

{∫
S
ϕ(eJs)dσ(J)

}
ds

and

B(r, t) =
1

2π

∫ π

−π

1

2
[Pr(t+ s)− Pr(t− s)]

{∫
S
Jϕ(eJs)dσ(J)

}
ds.

In A and B the function ϕ enters, respectively, through its “imaginary mean” and “imaginary
first moment” on each copy of S inside ∂B.

Passing in the limit as r → 1−, using the fact that the classical Poisson kernel as linear
operator tends to the Dirac delta function, we obtain -at least when ϕ ∈ C = C(∂B,H) is
continuous on ∂B-:

Πϕ(etI) =

∫
S
(1− IJ)ϕ(eJt)dσ(J). (5)

By density of C in Lp (p <∞), the integral formula for Π extends to Lp if Π is bounded on Lp.
Since Π is bounded on L2, by inclusion it is defined on Lp’s at least when 2 ≤ p ≤ ∞. Formula
(5) is in this case true for a.e. etI in ∂B.

Consider the case p =∞ of the theorem first. Taking the essential supremum, we have that

‖Πϕ‖∞ ≤
∫
S
|1− IJ |dσ(J)‖ϕ‖∞, (6)
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with equality if ϕ(eJs) = |1− I0J |(1− I0J)−1 for some I0 ∈ S. Using spherical coordinates on S
such that I = (0, 0, 1) and J = (sin t cos s, sin t sin s, cos t) with s ∈ (0, 2π) and t ∈ (0, π), we get
that |1− IJ | = 2 sin(t/2), dσ(J) = sin(t)dtds, and hence that∫

S
|1− IJ |dσ(J) = 4/3, (7)

thus concluding the proof of Part (i) of Theorem 1. Similarly, when 2 ≤ p < ∞ we have, with
1
p + 1

q = 1,

‖Πϕ‖p ≤
(∫

S
|1− IJ |qdσ(J)

)1/q

‖ϕ‖p. (8)

We have used Hölder’s inequality in (5) and the fact that the first factor on the right of (8) is
independent of I. A simple calculation with the same spherical coordinates on S used to obtain
(7) gives (∫

S
|1− IJ |qdσ(J)

)1/q

= 2

(
2

q + 2

)1/q

= 2

(
2p− 2

3p− 2

) p−1
p

,

and the proof of Theorem 1 is finished.

Proposition 5. L2
s is a closed subspace of L2.

Proof. Let {fn}n be a sequence in L2
s converging in L2 norm to f ∈ L2. We want to show that the

difference f(eJt)− (a(t) + Jb(t)), where a(t) = 1
2 [f(eIt) + f(e−It)] and b(t) = I

2 [f(e−It)− f(eIt)]
for any I ∈ S, equals zero in L2 norm. For any n ∈ N we have

‖f(eJt)− (a(t) + Jb(t)) ‖2
≤ ‖f(eJt)− fn(eJt)‖2 + ‖fn(eJt)− an(t)− Jbn(t)‖2 + ‖an(t) + Jbn(t)− a(t)− Jb(t)‖2,

with obvious notation. The first summand tends to 0 as n goes to ∞ and the second summand
vanishes for any n since fn ∈ L2

s. The last term can be bounded as

‖an(t) + Jbn(t)− a(t)− Jb(t)‖2 ≤ ‖an(t)− a(t)‖2 + ‖bn(t)− b(t)‖2,

where we can choose any slice ∂BI to compute both quantities on the right side. The fact that
fn converges to f in L2 norm yields that, for σ-almost every I,

∫ 2π
0 |fn(eIt)− f(eIt)|2dt tends to

0 as n goes to ∞, and hence, that both ‖an(t)− a(t)‖2 and ‖bn(t)− b(t)‖2 tend to 0 as n goes
to ∞. Therefore we conclude that f ∈ L2

s.

We end the note with some remarks. It is a peculiar fact that 1 < ‖Π‖∞,∞ < ∞. Many
natural projection operators defined on L2 spaces extend to contractions to Lp for 1 < p < ∞.
This is the case with restriction operators ϕ 7→ χEϕ, where χE is a measurable characteristic
function; or, closer to the operator we are considering here, the projection onto the space of
functions endowed with some symmetry. For instance, let LS be the space of the functions ϕ on
∂B which are measurable and such that ϕ(eIt) = a(t) depends on t alone, set LpS = Lp ∩LS, and
let ΠS : L2 → L2

S be the orthogonal projection. We might write

ΠSϕ(eIt) =

∫
SO(3)

ϕ(eRIt)dh(R),
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where SO(3) is the orthogonal group, acting on S as I 7→ RI, for any R ∈ SO(3), and dh is its
(bi-invariant) Haar measure, normalized to have h(SO(3)) = 1. Alternatively, we might ask ϕ
to be covariant under rotations,

ϕ(eRIt) = Rϕ(eIt). (9)

(If ϕ = eKs, then Rϕ = eRKs.) The projection from L2 to the subspace of the functions
satisfying (9) is

Π′Sϕ(eIt) =

∫
SO(3)

R−1ϕ(eR(I)t)dh(R). (10)

Observe that there is a formal analogy between (9) and (10), and the integrals appearing in
Corollary 4.

At the other extreme, some projection operators on L2 are unbounded in L∞. The prototype
is the conjugate function operator in one complex variable, and an avatar of it in our context
might be

ϕ(eIt) =
∞∑

n=−∞
eIntan(I) 7→ Π̃ϕ(eIt) =

∞∑
n=0

eIntan(I).

Tipically, projections of this kind can be expressed in terms of singular integral operators.
The projection Π onto slice functions seems to be intermediate between these two families of

operators. It shares with the first the fact that it is linked with a geometric-algebraic invariance
property. This might “explain” the boundedness in L∞. On the other hand, the invariance
can not be simply stated in measure-theoretic terms, and this might “explain” why it is not a
contraction of L∞: cancellations in the integrals play a role, and this causes the Lp norm of the
operator to grow.

To have a hint as to which kind of cancellations are involved, it is instructive to consider the
relation: ∫

S
|Πϕ(eIt)|2dσ(I) =

∣∣∣∣∫
S
ϕ(eIt)dσ(I)

∣∣∣∣2 +

∣∣∣∣∫
S
Iϕ(eIt)dσ(I)

∣∣∣∣2 ,
which follows from Corollary 4. If the function ϕ(eJt) = a(t) + Jb(t) is already slice, then the
first integral vanishes for a = 0, while the second does for b = 0. This is somehow a measure of
the amount of cancellation which is going on in the integrals.
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