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Abstract. Two fractional Fourier transforms are used to define bi-fractional displacement
operators, which interpolate between displacement operators and parity operators. They are
used to define bi-fractional coherent states. They are also used to define the bi-fractional Wigner
function, which is a two-parameter family of functions that interpolates between the Wigner
function and the Weyl function. Links to the extended phase space formalism are also discussed.

1. Introduction

Wigner and Weyl functions and also P and () functions play a central role in the general area
of phase space methods [1, 2]. They are quantities which describe pseudo-probabilities and
correlations associated to quantum states. There have also been other more general quantities,
which interpolate among them, and provide a more general formalism. In this general context
in a recent publication [3], we presented a two-parameter interpolation between displacement
and parity operators (or similarly between Weyl and Wigner functions). The displacement and
parity operators are related through a two-dimensional Fourier transform, which we replace with
fractional Fourier transforms [4, 5, 6, 7]. This leads to a two-parameter family of operators which
we call bi-fractional displacement operators, and which include as special cases the displacement
and parity operators.

In the present paper we review briefly and extend this work, by discussing links with the
extended phase space method in refs [8, 9, 10, 11, 12]. The latter uses the fact that the Wigner
function W(x,p) is related to the Weyl function W(X , P) through a two-dimensional Fourier
transform. x,p are position and momentum entering in the Wigner function, and X, P are
position and momentum increments entering in the Weyl function. One Fourier transform
involves the variables x, P and the other the p, X. These Fourier transforms lead to uncertainty
relations between the x, P variables (and also the X, p variables), which have been studied in
[13]. An ‘extended Wigner function’ (and other ‘extended quantities’) that depend on z, p, X, P
have been introduced in the extended phase space x — p — X — P. In this language, the two
variables of the bi-fractional displacement operator studied here, are in the direction defined by
the angle ¢, in the x — P plane, and also in the direction defined by the angle ¢2 in the p — X
plane (see figl). Using the bi-fractional displacement operator we get a two-parameter family
of functions which include as special cases the Wigner and Weyl functions.

In section 2, we discuss briefly fractional Fourier transforms, in order to define the notation.
In section 3, we introduce the bifractional displacement operators. In section 4, we act with them
on the vacuum to get bi-fractional coherent states. In section 5, we introduce the ‘bi-fractional
Wigner functions’, which is a two parameter family of functions, that includes Wigner and Weyl
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functions as special cases. In section 6, we link the present work with the extended phase space
formalism. We conclude in section 7, with a discussion of our results.

2. Fractional Fourier Transform
The fractional Fourier Transform has been studied extensively for a long time. It is a
generalisation of the Fourier transform given by

a+ Oq
V2 V2

This is the differential form and it is equivalent to the following integral form

fola) = exp(ipATA) f(a); A= (1)

= [ Kota )1 (305 (@)

where Ky (o, §) is the kernel
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It is easily seen that for ¢ = /2 we get the Fourier transform, and for ¢ = 7 the parity operator
with respect to the origin which we denote as P(0,0) . We note that,

/dﬁ IC¢>1 (Oz,,@)/c@(ﬁ,’y) = K¢1+¢2(O‘77) (4)

The two-dimensional fractional Fourier transform is given by
fonn(0.) = [ Kor(B00 Kol =)0l Bl o)

3. Bi-fractional Displacement operator
We consider the harmonic oscillator in the Hilbert space, H with & and p as the position and
momentum operators. We define the displacement operator as

D(X, P) = exp(iV2Pi — ivV2XPp). (6)

The bi-fractional displacement operator is defined as
B¢1,¢2(a?5) = [COS(¢1 - ¢2)]1/2/K¢2 (B?X)Kﬁbl (av _P)D(X7 P)dX dp. (7)

By, ¢, (a, 3) is a continuous function of ¢1,¢s. There is an important difference between
Eqs(5),(7). In Eq.(5) o/,0" are independent variables. In Eq.(7) X, P are dual quantum
variables, multiplied by #, p which do not commute. Integrations should be performed very
carefully taking into account the ordering of the operators &, p. A result of this is the prefactor
[cos(¢1 — ¢2)]"/? which is important for unitarity.

In [3] we have proved that the By, 4,(cr, B) are elements of the group HW x SU(1,1) which
is the semidirect product of the Heisenberg Weyl group HW of displacements, by the SU(1,1)
group of squeezing transformations. They are ‘special elements’ in the sense that not every
element of this group can be written as By, 4,(c, 3).
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A special case of By, ¢,(c, () is the parity operator with respect to the point («, 3), which is
defined as

Pla,B) = D (CQ“ g) P(0,0)D" <2 g) D(a, BYP(0,0) (8)

The parity operator is related to the displacement operator through a two-dimensional Fourier
transform

Pla,p) — % / D(X, P)exp[i(pX — Px)] dX dP
_ / D(X, P) Kz (p, X) K (v, — P)dX dP )
For ¢1 = ¢ = 7, we get

Bz = (a,B) = P, B) (10)

The bi-fractional displacement operator By, 4, (e, §) is unitary:

[B¢1,¢2 (aaﬂ)]T = B—¢1,—¢2(_aa —p) (11)
Special cases are:
00(aB) =D(B, —a)
g g( ,B8) =P(a, B)
rx(a, B) =D(-8,a) (12)

The relationship between two bi-fractional displacement operators with different variables is

+ o . 1/2
Byi+on ot (@, B) = |C08(féos(zi—zz)llg2)’

< / Qo do gy (B, B')Kon (0, 0" By (e ) (13)

Acting with the displacement operator on both sides of the bifractional displacement operator
we get

D(,€)Bg, 4, (c, B)D(1,€) = By, g, (— — 2vsin ¢1 B+ 2¢sin ¢)
exp [i(2av cos ¢ + 1% sin 261 )]
exp [i(26€ cos g + €2 sin 26)] (14)

X

X

4. Bifractional coherent states
Acting with By, 4,(c, 3) on the vacuum |0) we get the generalized coherent states

|, B 91, ¢2) = By, 4, (v, B) |0) (15)

In the special case when ¢1 = ¢o = 0, and ¢1 = ¢ = Z we get Glauber coherent states:

|~5.050,0) = | 8: 3, g> = |, ) (16)
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They are eigenstates of the creation and annihilation operators

b(¢1a ¢2) = B¢1,¢2 (O, O)a B¢1,¢2 (07 0)
bT(¢17 ¢2) - B¢>1,¢>2 (07 O)aTB%,d)Q (07 0)7 (17)

but they have novel non-trivial properties with respect to a,af. They also satisfy the resolution
of the identity

2]:7_‘_/|a7187¢17¢2> <aaﬁa¢17¢2|dadﬁzl (18)

In [3] we have studied the Bargmann functions of these coherent states. Also the whole formalism
of coherent state quantization, can be studied using the bifractional coherent states.

5. Bi-fractional Wigner functions
We consider the trace of a trace-class operator © with By, 4,(a, 3):

Vi ,62(, B|©) = Tr[OBy, 4,(a, B)]
= Jeos(r = )" [ Kon(5.)

X K¢ (o, —PYW(X, P|©)dXdP (19)
This is a generalization of the Wigner and Weyl functions. Indeed

Voo(a, B1©) = W(B, —a|©)
Vz = (o, B|©) = W(a, B|O)

Vrr(a, 81©) = W(—B,0|0) (20)

In the special case that ¢; = ¢2 = 0, the variable a becomes the variable P, the variable
8 becomes the variable X (see fig.1), and Vy, 4,(c, 3|0) is the Weyl function. In the special
case that ¢1 = ¢ = 7, the variable o becomes the variable z, the variable 3 becomes the
variable p, and Vg, 4, (o, 5|©) is the Wigner function. In general, the function Vy, 4, (e, 8|©) is
a two-parameter interpolation between the Wigner and Weyl functions.

When © = p is a density matrix, Vg, 4,(, B|p) is the bi-fractional Wigner function for the
state described by p. As example, we consider the superposition of coherent states

|s) = Nlaw, Bo) + [—a0, —50)] (21)

where A is a normalization factor. In figs 2, 3 we plot R[Vz = (a, 8|©)] and [V= = (a, 8|©)| for
this state with ag = 1.8 and Sy = 0. In the Weyl function the auto-terms are in the middle and
the cross-terms are in the ‘wings’, while the opposite is true in the Wigner function. Here we
have both auto-terms and cross-terms in the wings.

6. Links with the extended phase space formalism

The extended phase space formalism uses the fact that the Wigner function W(z,p) and the
Weyl function W(X , P) are related through a two-dimensional Fourier transform. The Wigner
function describes quantum noise, and the Weyl function quantum correlations. Starting from
a function g(u) with « € RY, and its Fourier tranform g(v) with v € RY, we can introduce
(in any context) ‘a Wigner function’ W (u,v) (and other quantities) in the u — v phase space,
which is R?Y. The extended phase space formalism introduces extended Wigner functions that



30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012007 doi:10.1088/1742-6596/597/1/012007

Figure 1. The « direction in the x — P plane within the extended phase space t —p — X — P.
Also the § direction in the p — X plane. For clarity, the two planes are drawn separately, but
they belong to the same four-dimensional space.
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Figure 2. R[Vz = (a, 8|0)] for the state of Eq.(21), with oy = 1.8 and 5y = 0.

R[Vy5(a, 6)]

-10 -10

depend on four variables (x,p, X, P) and studies transformations in the extended phase space
x—p—X —P. The x— P plane links quantum noise in the z-direction, with quantum correlations
in the P-direction. Uncertainty relations in the z — P plane have been studied in [13]. They
are related to the usual uncertainties in the case of pure states, but they are different for mixed
states. Analogous comments can be made for the p — X plane.

In the extended phase space x — p — X — P we can introduce the following dispacement
operator of Weyl functions:

A1+ B
@(Al, AQ, Bl, BQ) = eXp[(Bg — Ag)ap] exp <—Zl21P> exp[(B1 — Al)ax]

X exp <¢AQ"2FBQX> (22)
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Figure 3. |Vz = (a, 8]0)] for the state of Eq.(21), with ap = 1.8 and = 0.
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Acting with this on the Weyl function W(X , P|©) we get [9]

— A+ B Ay + B
D(A1, Ay, By, Bo)W(X,P|®) = exp (—il‘;lp + i%X — A1 By + ¢A231>

X W(X—l—Bl —Al,P—AQ—i-BQ) (23)
We call © the operator with this Weyl function:
W(X, P|®') = D(A1, As, By, B2)W(X, P|O) (24)

In this language, the present paper considers quantities in the general @ — 3 plane (fig.1),
which becomes the X — P plane in the special case ¢1 = ¢2 = 0, and the x — p plane in the
special case ¢1 = ¢ = 7. It then studies relations between the various quantities. For example,

we show that Vg, 4,(a, 3|©') is related to W(X, P|©) as follows:

1@mxm5@0::\ma@—¢wW{/K@wJQQMm—P>

X [@(Al, AQ, Bl, BQ)W(X, P‘@)]dXdP
— Jeos(r — ) [ Kin(B.X + 2)exp (v )

X K¢ (o, =P — py) exp (=i  P) W(X, P|©)dXdP. (25)
Here
Ay + B A1+ B
M2:A1_Bl; V2:%§ ,UJl:AQ_B% Vllel- (26)

We next introduce the displaced kernel of the fractional Fourier transform

Ry(x,y|k, X) = exp(iry) exp(A0y) Ky (x,y) = exp(iky)Ky(z,y + N), (27)
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and rewrite Eq.(25) in the compact form

V¢1,¢2(a7/8|@/) = ’COS(¢1 _¢2)|1/2/ﬁtﬁz(/&X‘V?vu?)ﬁ%(a’_P| —V17—,u1)

x  W(X, P|@)dXdP (28)

Other similar relations can also be proved. In particular symplectic Sp(4, R) transformations in
the r — p — X — P extended phase space require further study.

7. Discussion

We have studied the bi-fractional displacement operators By, ¢,(c, §). They include as special
cases, both the displacement operators and the parity operators (Eq.(12)). We stress the
importance of the prefactor [cos(¢1 — ¢2)]*/? in Eq.(7), for unitarity. This is related to the
fact that in Eq.(7) X, P are dual quantum variables, multiplied by &, p which do not commute.

Using them we have defined the bi-fractional coherent states in Eq.(15). We have also defined
the bi-fractional Wigner functions in Eq.(19), which include as special cases, both the Wigner
and Weyl functions (Eq.(20)).

We have interpreted the formalism within the extended phase space, which relates quantum
noise with correlations. The bi-fractional displacement operators By, ¢, (e, 3), are displacement
operators in the e — 3 plane of fig.1. The formalism provides an interpolation between various
quantities in phase space.

For further work we suggest the application of these ideas to finite quantum systems with
variables in Z, (the integers modulo d). We expect this generalization to be easier for prime d,
in which case Zg is a field. Overall, the merit of the formalism is that different quantities appear
to be special cases of a single quantity.
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