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Abstract. There has recently been a revival of the Bloch theory of energy bands in solids.
This revival was caused, on one hand, by the discovery of topological insulators and the discovery
of graphene, and, on the other end, by a very efficient new technique that was developed for
creating artificial solids. These are the cold atoms in optical lattices. Last year geometric
phases were measured in energy bands of cold atoms in a one-dimensional optical lattice by
using Bloch oscillations. These phases are related to the Wyckoff positions, or the symmetry
centers in the Bravais lattice. In this lecture a theoretical frame is developed for magnetic Bloch
oscillations, meaning oscillations in the presence of a magnetic field. The theory is based on
the kq-representation and the symmetric coordinates in solids. It is shown that for a Bloch
electron in a magnetic field the orbit quasi-center is a conserved quantity. This is similar to the
conservation of the quasi-momentum for an electron in a periodic potential. When an electric
field is turned on, the orbit quasi-center oscillates in a similar way to the Bloch oscillations in
the absence of a magnetic field. But there is a difference because the magnetic Brillouin zone is
different. It depends on the strength of the magnetic field. An analogy is drawn between Bloch
oscillations and magnetic Bloch oscillations. By using the magnetic translations it is indicated
that a magnetic Wannier-Stark ladder appears in the spectrum of a Bloch electron in crossed
magnetic and electric fields. The geometric phases for magnetic Bloch oscillations should be
magnetic field dependent.

1. Introduction
The derivation of magnetic Bloch oscillation will be carried out in this talk by using the basic
operators in quantum mechanics (x and p being the coordinate and momentum operators)

exp

(
i

~
pa

)
and exp

(
ix

2π

a

)
(1)

where a is an arbitrary constant. It can be checked that the operators commute[
e
i
~pa, eix

2π
a

]
= 0 (2)

These exponentiated operators have a long history. They appear already in the book by
Hermann Weyl “The Theory of Groups and Quantum Mechanics” (1928) in connection with
the Weyl-Heisenberg group [1]. In the same year, 1928, they appear in Felix Bloch Ph.D. thesis
(under Heisenberg) for building the Bloch Theory of Solids [2]. In 1932 von Neumann uses them
in his book “Mathematical Foundations of Quantum Mechanics” [3]. In 1960 Julian Schwinger
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uses them in the construction of finite Hilbert spaces [4]. In 1964 they are used in constructing
the magnetic translation group [5, 6]. Yakov Zel’dovich uses them in the definition of quasi-
energy in 1967 [7]. Finally, in 1967 they are used in the kq-representation [8, 9, 10]. It should be
pointed out that there is no classical analog for the commutation relation (2) of these operators:
there are no two classical functions, one of x, f (x), and one of p, g (p), that give a vanishing
Poisson bracket.

Paul Dirac in “Recollections of an Exciting Era” [11] draws attention to the correspondence
between a quantum commutator and a classical Poisson bracket. They differ by a constant.
This correspondence does not hold for the exponentiated operators in Eq. (1). According to
Noether’s theorem [12] in classical physics, continuous symmetries lead to conservation laws.
In quantum mechanics Wigner has shown that any transformation, continuous or discrete, that
leaves the Hamiltonian unchanged can be expressed by a unitary or anti-unitary operator, which
is a conserved quantity [13]. The difference of conserved quantities in classical and quantum
mechanics can best be seen by comparing the motion of a free particle with the motion in a
periodic potential. For a free particle the Hamiltonian H does not depend on the coordinate x
and any continuous translation will not change H. The linear momentum p is conserved both in
classical and quantum mechanics. For a particle in a periodic potential the Hamiltonian remains
invariant under discrete translations by the period a of the periodic potential. As a consequence
of this discrete symmetry there is no conserved quantity in classical mechanics. But in quantum
mechanics this invariance of the Hamiltonian under discrete translations leads to the important
conservation law of the quasi-momentum (or the Bloch momentum) k.

As was pointed out above the exponentiated operators in Eq. (1) define the kq-representation
[8, 9, 10, 14]. The eigenvalues of these operators, k and q, are the symmetric coordinates in
solids (in reference [10] these coordinates are called “natural coordinates”). One should compare
the k and q in solids with the spherical coordinates r, θ, and ϕ in atomic physics. In the latter
case the potential depends only on the absolute value r of the radius vector ~r, while θ and ϕ
appear in the conserved angular momentum ~L. By choosing spherical coordinates one simplifies
the solution of the problem significantly. In a crystalline solid the potential is a function of
the quasi-coordinate q only, V (q), while the quasi-momentum k is a conserved quantity. The
operators x and p are connected to k and q in the following way [14]

x = i ∂∂k + q , p = −i~ ∂
∂q (3)

The wave function C (k, q) in the kq-representation is given by the wave function ψ (x) in the
x-representation as follows [14]

C (k, q) =
( a

2π

)1/2∑
n

eikanψ (q − na) (4)

Here a is like in Eq. (1). The effectiveness of the use of the kq-representation is best
demonstrated in the derivation of the acceleration theorem for a Bloch electron in an electric
field E. The Hamiltonian for this problem in the kq-representation is [14]

H = − ~2

2m

∂2

∂q2
+ V (q)− eE

(
i
∂

∂k
+ q

)
= H0 − eE

(
i
∂

∂k
+ q

)
(5)

where H0 is the Bloch Hamiltonian for E = 0. From this Hamiltonian the acceleration
theorem for the quasi-momentum follows immediately (one needs only to use the simple quantum
mechanics rule that the time rate of change of k is given by the commutator of the Hamiltonian
with k)

~
dk

dt
= i [H, k] = eE (6)
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Here H is the Hamiltonian in Eq. (5). Eq. (6) is exact [15]! It should be pointed that the
existing derivations of the acceleration theorem (6) are not entirely elementary and its validity
is restricted to weak electric fields and for k in a small part of the Brillouin zone [16]. For cold
atoms in optical lattices the driving force is different from the one in Eq. (6), e.g. gravity [17]
or a magnetic field gradient acting on the spin of the atom [18]. A description of the properties
of ultracold bosonic and fermionic quantum gases can be found in the review article [19]. The
celebrated acceleration theorem in Eq. (6) is of central importance in the Bloch theory of energy
bands in solids, in general, and in Bloch oscillations, in particular [20]. In this lecture a similar

equation to Eq. (6) is developed for the vector ~k(B) which labels the eigenvalues of the magnetic

translations for a Bloch electron in a magnetic field ~B. It is shown how ~k(B) is related to the orbit
quasi-center ~q0. Using the connection between ~k(B) and ~q0, an elementary equation is developed
for the orbit quasi-center ~q0 of a Bloch electron in crossed magnetic and electric fields. It is
shown that Bloch-like oscillations may exist also in the presence of a magnetic field ~B.

2. Motion in Magnetic and Electric Fields
For a particle of charge e in a periodic potential V (x, y), a magnetic field in the z-direction, and
an electric field in the xy-plane, the Hamiltonian is

H =
1

2m

(
~p− e

c
~A
)2

+ V (x, y)− e ~E · ~r ≡ H(B)
0 − e ~E · ~r (7)

In what follows, we shall use the symmetric gauge for the vector potential ~A = 1
2
~B × ~r. For a

free particle in a magnetic field ~B the conserved quantity is known to be the orbit center ~r0 [21]:

x0 = x+ c
eB

(
py − eB

2c x
)

, y0 = y − c
eB

(
px + eB

2c y
)

(8)

There is a simple picture of this conservation law for a charged particle moving in the plane
perpendicular to the magnetic field ~B: this particle moves in a circle with a fixed orbit center
~r0. This holds both in classical and quantum mechanics. The difference is that in quantum
mechanics ~r0 is an operator with components x0 and y0 that do not commute [21]. When in
addition to the magnetic field there is also a periodic potential V (x, y) (the Hamiltonian of the

problem is H
(B)
0 in Eq. (7)), the symmetry of the problem is then the magnetic translation

group [5, 6]. This group has a subgroup of commuting magnetic translations [22]

T
(
~b1

)
= exp

[
1
~

(
~p+ e

2c
~B × ~r

)
· ~b1
]

, T
(
~b2

)
= exp

[
1
~

(
~p+ e

2c
~B × ~r

)
· ~b2
]

(9)

where ~b1 and ~b2 are multiples of the periods ~a1 and ~a2 of the periodic potential V (x, y)

~b1 = N1~a1 , ~b2 = N2~a2 , ~b = m1
~b1 +m2

~b2 (10)

Here m1, m2 are integers running from −∞ to ∞, and where N1, N2 are positive integers that
appear in the rationality condition on the magnetic field B [22]

eBb1b2 = hc (11)

Having in mind the commutation relation of the operators x0 and y0 in Eq. (8)

[x0, y0] = −i ~c
eB

(12)

it is easy to check that the magnetic translations T
(
~b1

)
and T

(
~b2

)
in Eq. (9) commute; where

we have also used the rationality condition in Eq. (11).
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3. Orbit Quasi-center
We are now in a position to define the orbit quasi-center ~q0. Since the magnetic translations in
Eq. (9) commute, they have simultaneous eigenfunctions and eigenvalues. We shall denote their
eigenvalues in the following way (we use Eq. (8)):

T
(
~b1

)
= exp

(
− ieB

~c
y0b1

)
∼ exp

(
ik(B)
x b1

)
(13)

T
(
~b2

)
= exp

(
ieB

~c
x0b2

)
∼ exp

(
ik(B)
y b2

)
(14)

In Eqs. (13) and (14) x0 and y0 are the operators of the orbit center ~r0, and the magnetic ~k(B)-

vector labels the eigenvalues of the magnetic translations T
(
~b1

)
and T

(
~b2

)
. The ~k(B)-vector

has no direct physical meaning. But we can label the eigenvalues of the exponentiated operators
in the Eqs. (13), (14) also by the orbit quasi-center ~q0

exp

(
− ieB

~c
y0b1

)
∼ exp

(
− ieB

~c
q0yb1

)
(15)

exp

(
ieB

~c
x0b2

)
∼ exp

(
ieB

~c
q0xb2

)
(16)

Here q0x and q0y are the x and y-components of the orbit quasi-center ~q0. Eqs. (15), (16) give the
definition of the orbit quasi-center ~q0. The reason we call it quasi-center is because it is defined
mod ~b in Eq. (10). This is in line with the definition of the quasi-momentum k in the Bloch
theory, k is defined modulo the vector of the reciprocal lattice. Since the magnetic translations

T
(
~b1

)
and T

(
~b2

)
commute with the Hamiltonian H

(B)
0 in Eq. (7), ~q0 is a conserved quantity

for a Bloch electron in a magnetic field ~B. This is in full analogy with the Bloch theory: for
a free particle, the conserved quantity is the momentum p, and when the crystal potential is
turned on, the conserved quantity is the quasi-momentum k.

The concept of the orbit quasi-center ~q0 is consistent with the classical Pippard network [23]:
a charged particle in a magnetic field moves on a fixed circle with a definite center ~r0; in the
presence of a periodic potential, the conserved quantity is ~q0, which is defined mod ~b in Eq.
(10) and the particle moves then on a set of circular orbits with centers on the lattice ~b, which
is the Pippard network [23].

The next step is to consider how ~q0 varies in time when the electric field is turned on. We
have

d

dt
T
(
~b
)

=
i

~

[
H,T

(
~b
)]

= − i
~

[
e ~E · ~r0, T

(
~b
)]

(17)

because T
(
~b
)

commutes with H
(B)
0 in Eq. (7) and with the components of the operator

~p + e
2c
~B × ~r that appear in the brackets in Eq. (8) (also, in the Hamiltonian H in Eq. (7)).

Having in mind the commutation relation for the operators x0 and y0 in Eq. (12), we find by
using Eq. (17) that

~̇q0 =
c ~E × ~B

B2
(18)

where ~q0 is the orbit quasi-center in the magnetic field ~B, namely, ~q0 = ~r0 mod ~b in Eq. (10).
One can check that the same equation as in Eq. (18) holds also for the orbit center ~r0, when
V (x, y) = 0 in Eq. (7)

~̇r0 =
c ~E × ~B

B2
(19)
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The latter equation is well known in classical electrodynamics, where it is called the equation
for the drift velocity [24]. Since on the right hand side of Eq. (19) there is a constant vector,
the orbit center ~r0 will grow with time indefinitely. The situation is different for the orbit quasi-
center ~q0. The latter being defined mod ~b, it will oscillate with time. We call this the magnetic
Bloch oscillations of the orbit quasi-center ~q0.

4. Magnetic Bloch Oscillations
There is an analogy between the Eq. (6) for the quasi-momentum k and Eq. (18) for the orbit
quasi-center ~q0. In both cases, we have oscillations. This analogy goes much further. For a

charged particle in a magnetic field (for the Hamiltonian H
(B)
0 in Eq. (7) with V (x, y) = 0)

the energy spectrum consists of sharp Landau levels [21]. In what follows, we shall consider the
simplest case of the rationality condition as given by Eq. (11). Under this condition, when a
periodic potential is introduced, each Landau level broadens into a magnetic energy band [22]
(the more general case of the rationality condition is considered in the calculation of the quantum
Hall effect [25]). The energy levels inside the magnetic Bloch band are labeled by the orbit quasi-

center ~q0. When the magnetic field ~B = 0, the energy levels inside a Bloch band are labeled
by the quasi momentum k. As was mentioned in the introduction the acceleration theorem in
Eq. (6) forms the basis for the Bloch oscillations for a Bloch electron in an electric field. A

similar theorem can be derived for the magnetic ~k(B)-vector which labels the eigenvalues of the
magnetic translations in Eqs. (13) and (14) when a magnetic field ~B is present. The magnetic

translations commute with H
(B)
0 in Eq. (7). For calculating the time derivative of the magnetic

~k(B)-vector we have to find the commutator of the magnetic translation with the electric field
energy −e ~E · ~r in Eq. (7). The result is exactly like in Eq. (6) for the quasi-momentum k

~
d~k(B)

dt
= e ~E (20)

By comparing Eqs. (13), (14) with Eqs. (15), (16) respectively we find the following relation

between the orbit quasi-center ~q0 and the magnetic ~k(B)

~~k(B) =
e

c
~B × ~q0 (21)

From Eqs. (20) and (21) we find again Eq. (18) for the orbit quasi-center, which is the main
result of the talk [26].

Let us also show that the Hamiltonian in Eq. (7) has a spectrum containing a ladder structure
like in the case of the Wannier-Stark ladder [14]. This follows from the following observation.
Let ψε be an eigenstate of the Hamiltonian in Eq. (7) corresponding to the energy ε. We
consider the case when the electric field points in the x-direction. The electric field energy in
the Hamiltonian (7) is then

−eExx (22)

Consider the magnetic translation (see Eq. (9))

T (m~a1) = exp

(
− ieB

~c
y0a1m

)
(23)

Its commutation with H in Eq. (7) for the electric field energy in Eq. (22) is

T+ (ma1)HT (m~a1) = H +ma1eEx (24)
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Table 1. Conserved quantities and the influence if an electric force on them. V (x, y): periodic

potential; ~B: magnetic field; ~p: momentum; ~r0: orbit center; ~k: quasi-momentum; ~q0: orbit
quasi-center; ~E: electric field. Remark: as explained in the text for neutral atoms ~E and ~B can
be created artificially.

Free space V (x, y) ~B ~B and V (x, y)

Conserved
quantities

~p ~k ~r0 ~q0

Influence of
an electric
force on them

~̇p = e ~E ~~̇k = e ~E ~̇r0 =
c ~E × ~B

B2
~̇q0 =

c ~E × ~B

B2

The result in Eq. (24) was obtained in a way similar to the results in Eqs. (17) and (18). This
shows that if ψε is an eigenfunction of H in Eq. (7) with the eigenvalue ε, then the function
T (ma1)ψε is an eigenfunction of H with the eigenvalue ε+ma1eEx

HT (m~a1)ψε = (ε+ma1eEx)T (ma1)ψε (25)

for m = 0,±1,±2, . . .. This shows that the magnetic Wannier-Stark ladder is contained in the
spectrum of H. The argument of Eq. (25) was originally used for indicating that a Stark ladder
might exist when there is no magnetic field [27].

At the beginning, we pointed out how one mimics an electric force on neutral atoms in optical
lattices [17, 18]. There are also ways to mimic artificial vector gauge potentials for neutral
particles in an optical lattice [28, 29]. The motion of a charged particle in crossed magnetic and
electric fields is more complicated than given by Eq. (19). The particle itself moves on a curve
called trochoid [24]. It is the orbit center ~r0 that satisfies the simple equation (19). Eq. (18) is
a quantum-mechanical result which is obtained when a periodic potential is turned on. There
is no classical analog for Eq. (18).

In Table 1, we summarize the conserved quantities we deal with, and how they are influenced
by the “electric” force. The quotation marks are used to indicate that for neutral atoms one
uses substitutes for the electric force.

We have started the talk with the exponentiated operators in Eq. (1). The eigenvalues of
these operators are the symmetric coordinates, the quasi-momentum k and the quasi-coordinate
q, for a Bloch electron in a solid. They are the kq-representaion. The orbit quasi-center ~q0, that
was used for the magnetic Bloch oscillations, is defined by the Eqs. (15) and (16). By changing
notations

x0 = cP
eB , y0 = X , b2 = a , b1 = hc

eBa
(26)

where b1 is obtained from the rationality condition in Eq. (11), the operators in Eqs. (15) and
(16) turn into the exponentiated operators of the kq-representation in Eq. (1)

exp
(
ieB
~c x0b2

)
→ exp

(
i
~Pa

)
, exp

(
− ieB

~c y0b1
)
→ exp

(
−iX 2π

a

)
(27)

The operators X and P form the phase plane of the orbit center ~r0. As was mentioned in the
introduction, von Neumann [3] used the exponentiated operators in Eq. (1) or (27) to construct
a complete set of functions

eix
2π
a
me

i
~panψ0 (x) (28)
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Figure 1. a. von Neumann lattice b. Gabor lattice

where m and n run from −∞ to +∞ and ψ0 (x) is the ground state of the harmonic oscillator.
This set is located on a lattice in phase plane as shown in Figure 1 (this figure contains also the
lattice in frequency ν and time t plane [30]). In physics this lattice is called the von Neumann
lattice, in signal processing it is called the Gabor lattice. What we show here is that this lattice
in phase plane xp is closely related to the Pippard network [23] for a Bloch electron in a magnetic
field in the coordinate plane x0y0 of the orbit center ~r0 in Eq. (8). The points inside the unit cell
of area h (the Planck constant) of the von Neumann lattice are related to the orbit quasi-center
q0x, q0y, while the lattice points in Figure 1.a are related to b1 and b2 in Eq. (26). The complete
set of functions in Eq. (28) is very widely used in signal processing [31], where x and p is
replaced by time t and frequency ν. It should be pointed out that von Neumann was right when
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he claimed that the set in Eq. (28) is complete. It turns out however that it is overcomplete by
one member [32].

In summary, one deals here with the problem of a Bloch particle in crossed electric and
magnetic fields. It is an old problem that has recently attracted wide renewed interest in view
of the new techniques of cold atoms in optical lattices subject to synthetic electric and magnetic
fields. Our focus is on magnetic Bloch oscillations. For deriving the main result given by Eq.
(18), we use the magnetic translations [5, 6]. Their eigenvalues were originally labeled by a

magnetic ~k(B)-vector, which has no direct physical meaning. As is well known by now, this
~k(B)-vector is related to the orbit quasi-center [22]. The main result in Eq. (18) replaces the
quasi-momentum acceleration theorem for the case of zero magnetic field. A crucial condition for
the use of commuting magnetic translations is the rationality condition given by Eq. (11). They
quantize the magnetic flux in the simplest case. Eq. (18) cannot be obtained for an irrational
flux because then there are no commuting magnetic translations, Eq. (9). It is pointed out that
the Hamiltonian (7) in combination with its symmetry of magnetic translations contains the
spectrum of a ladder structure, like in the case of the Wannier-Stark ladder for zero magnetic
field. In our case we choose the electric field in the x-direction, Eq. (22), which simplifies to
a great extent the derivation of the equations leading to the magnetic Wannier-Stark ladder.
In the latter case the experimental observation of the Wannier-Stark levels [20] came much
later than their prediction [27]. The theoretical calculation of their lifetime seems to remain a
challenging problem [33].
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