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Abstract. New mathematical conjectures have often been extracted from the analysis of
supersymmetric quantum field theories. Here we would like to illustrate how this extraction
process is performed.

1. Mathematical conjectures from QFTs: the classic example
The prime example where a big mathematical conjecture was obtained from the analysis of
supersymmetric quantum field theories (QFTs) was the discovery of the mirror symmetry in the
early 1990s. Let us quickly recall what this symmetry is.

Given a Calabi-Yau manifold X, there is an associated 2d supersymmetric QFT Q(X) :

X 7→ Q(X) (1)

In the space of 2d supersymmetric QFTs, there is an involutive automorphism σ

Q 7→ σ(Q) 7→ σ2(Q) = Q. (2)

Note that there is not yet a precise mathematical definition of what a 2d supersymmetric QFT
is, or what this automorphism σ is. However, the quantum field theorists knew these concepts
well enough, to find the following. Namely, given a Calabi-Yau X, it often happens that there
is another Calabi-Yau Y such that

σ(Q(X)) = Q(Y ). (3)

Properties of X and Y related in a way very mysterious to those who do not know the background
QFT material. For example, the complex structure of X is related to the symplectic structure
of Y .

By now there is a big mathematical industry studying the relation between X and Y .
However, mathematicians still do not talk directly about Q(X), as if it is the one-who-must-
not-be-named.
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2. Mathematical conjectures from QFTs: a recent one
There are many other minor such events where QFT led to new mathematical relations. For
example, consider the following expression

I(u, v;x, y) =

∮ ∏
±±±

Γp,q(tu
±1v±1z±1)

∏
±±±

Γp,q(tx
±1y±1z±1)∏

±
Γp,q(t2z±2)

∏
±

Γp,q(z±2)

dz

2πiz
(4)

where

Γp,q(z) =
∏
j,k≥0

1− z−1pj+1qk+1

1− zpjqk
(5)

is the elliptic gamma function.
This integral I(u, v;x, y) is obviously symmetric under the exchanges u ↔ v, x ↔ y.

However, it is also symmetric under the exchange u ↔ x. On the physics side, this symmetry
was conjectured in [1] in 2009. On the math side, this symmetry was proved completely
independently in [2] in 2009.

3. Previous formalisms of QFTs
What is this thing called QFT, that touches many parts of mathematics? Those who practice
QFT, including the author, feel they know what that is. However, those feelings are not enough
to convey it to the diverse audience of this conference series. We clearly need some formalism,
and we want some solid starting point. At this point, a reader might wonder that in fact there
have been many such formalisms. Examples include Wightman axioms, algebraic quantum field
theories, topological quantum field theories, and vertex operator algebras. They indeed capture
some of the aspects of QFTs, but none of them is comprehensive enough to even state what the
mirror symmetry is, or what the Seiberg-Witten theory is.

Such a formalism has not been written down anywhere yet, but the author thinks it should
not be impossible to do so. After all, the axioms of a group, that look so straightforward today,
took many years to be straightened out.

There is one other thing to be pointed out. In the study of QFT, in whatever formalization
mentioned so far, or in particle physics community in general, people tend to study each
individual QFT, Q1, Q2, . . . one by one. For example, the whole experimental high energy
particle physics can be said to be the quest to find exactly which QFT QSM describes elementary
particles, and thus, the universe.

But this is like studying groups one by one. There is nothing wrong with that, particularly
when there is a few particularly interesting groups / QFTs. We should, however, also study
group homomorphismG→ H, representations of groups, action of groups on spaces, the quotient
space G/H, etc. Similarly, we should study the interrelation among QFTs, the relation of QFTs
with other mathematical objects, etc.

4. A formalism of QFTs
From now on, a QFT is always assumed to be four-dimensional and N = 2 supersymmetric,
unless otherwise specified. A few basic formal axioms of QFTs are the following:

• Given a QFT Q and a 4d manifold X, we can form the partition function ZQ(X) ∈ C.

• Given two QFTs Q1 and Q2, we can form a new QFT Q1 ×Q2.

• This product is commutative, associative, has a unit •, i.e. Q× • = Q.

• The product is compatible with taking the partition function ZQ1×Q2(X) = ZQ1(X)ZQ2(Y ).

We also need a concept of G-symmetric QFTs:
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• Given a G-symmetric QFT Q and a 4d manifold X with G connection, we can form the
partition function ZQ(X) ∈ C.

• Given a G-symmetric QFT Q and a homomorphism ϕ : H → G, we can regard Q as an
H-symmetric QFT.

• Given a G1-symmetric QFT Q1 and a G2-symmetric QFT G2, their product Q1 × Q2 is
G1 ×G2-symmetric, and ZQ1×Q2(X) = ZQ1(X)ZQ2(X).

• Finally, the unit • is G-symmetric for any G.

From this extended viewpoint we can think of an unqualified QFT as an {id}-symmetric QFT.
Note that these formal properties are very much like spaces with G action:

• Given a space X with G action and a homomorphism ϕ : H → G, we can regard that X
has H action.

• Given a space X1 with G1 action and a space X2 with G2 action, their product X × Y has
G1 ×G2 action.

• A point • has trivial G action for any G.

Now, recall that given a space X with G×H action, X/G is a space with H action. Similarly,
given a QFT Q that is G×H-symmetric, we can form a new QFT Q/−/−/−G, which is H-symmetric.
Note that the G symmetry is gone. Usually this operation is called coupling to the gauge group
G. With the formal operations so far, we already have interesting QFTs:

• /−/−/−G. (6)

They are called pureN = 2 gauge theories with gauge group G in the standard physics literature.
For a four-manifold M , a slightly modified version of

Z• /−/−/−SU(2)(M) (7)

is the Donaldson invariant, as shown in [3].
Another basic construction is the following. Given a symplectic representation R of G, there

is a G-symmetric QFT we denote by Hyp(R):

R 7→ Hyp(R). (8)

This is usually called the free hypermultiplet in R, and has the following formal properties:

Hyp(R⊕R′) = Hyp(R)×Hyp(R′), Hyp(0) = • (9)

where 0 stands for a trivial, zero-dimensional representation.
Now we know there are QFTs of the form Hyp(R) /−/−/−G, which are usually called N = 2

supersymmetric gauge theories. For example, take G = U(1), and R = V ⊕ V ∗, where V ' C is
a standard 1-dimensional representation of U(1). Let

Q′ = Hyp(R) /−/−/−U(1). (10)

A version of its partition function, ZQ′(M), is the Seiberg-Witten invariant. These invariants
are concrete objects but rather deep, and will not be discussed further in this note.
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5. Mathematical objects associated to QFTs
Let us discuss two easier objects to discuss, associated to a given G-symmetric QFT Q. These
are the Higgs branch MHiggs(Q) and the superconformal index SCI(Q).

The Higgs branch MHiggs(Q) is a Hyperkähler space with G action, and the superconformal
index SCI(Q) is a class function on G that is a formal power series in p, q, t. They preserve
formal properties under the multiplication of the QFTs:

MHiggs(Q1×Q2) =MHiggs(Q1)×MHiggs(Q2), SCI(Q1×Q2) = SCI(Q1)×SCI(Q2). (11)

For the gauging Q/−/−/−G, we have

MHiggs(Q/−/−/−G) =MHiggs(Q)///G (12)

where ///G is the hyperkähler quotient construction and

SCI(Q/−/−/−G) =

(
1

Γp,q(t)Γ′p,q(1)

)r 1

|WG|

∮
SCI(Q)(z)∏

α Γp,q(zα)Γp,q(t2zα)

r∏
i=1

dzi

2π
√
−1zi

(13)

where α runs over the roots of G. Here we restricted z ∈ G to lie in the Cartan torus
z ∈ U(1)r ⊂ G.

For the free hypermultiplets Q = Hyp(R), we have

MHiggs(Hyp(R)) = R, SCI(Hyp(R))(z) =
∏
w

Γp,q(tz
w) (14)

where z is in the Cartan of G and w runs over the weights of R.
Now, given a symplectic representation R of G ×H, we can form Q = Hyp(R) /−/−/−G that is

H-symmetric. For this QFT, we have

MHiggs(Hyp(R) /−/−/−G) = R///G, (15)

which is a hyperkähler space with H action. Similarly, we have

SCI(Hyp(R) /−/−/−G)(y) =

∮ ∏
w⊕v Γp,q,t(z

wyv)∏
α Γp,q(zα)Γp,q(t2zα)

r∏
i=1

dzi
2πzi

, (16)

which is the so-called elliptic beta integral. They are both well-studied in mathematics.
Note that we start from a group G and its representation R, that are both well established

mathematical objects. We then pass to Hyp(R) /−/−/−G, which is not well formulated yet. Then
we pass back to MHiggs(Hyp(R) /−/−/−G) or SCI(Hyp(R) /−/−/−G), both of which are again well-
established mathematical-physical objects. How do we get something new?

6. Gaiotto’s construction
The key is that there are a more transcendental construction coming from six dimensions. Let G
be a simply-laced group. Then it is believed that there is a 6-dimensional supersymmetric QFT
SG with very good properties, called the 6d N=(2, 0) theory. Given a k-punctured Riemann
surface C and a 4d manifold X, define

ZG[C](X) = SG(X × C). (17)

This gives a 4d QFT SG[C] depending on C.
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With k-points, SG[C] is Gk symmetric. For example,

SG[ ], SG[ ] (18)

are G2, G3 symmetric, respectively. Not only that, SG[C] depends only on the topology of C:
you can exchange points without changing the theory. More mathematically, there is an Sk
action on k marked points on C. Therefore, when C has k marked points, SG[C] is Sk n Gk

symmetric. For example, SG[ ] is S3 nG3 symmetric.

Now, we can connect two punctures of two Riemann surfaces:

→ . (19)

Correspondingly, we have the crucial property

SG[ ] = (SG[ ]× SG[ ]) /−/−/−G (20)

where the gauging G is performed with respect to Gdiag → G×G associated to the two punctures
connected. This was first formulated by Gaiotto in [4] and opened up a new direction in the
study of supersymmetric quantum field theories.

We can say that the assignment
C 7→ SG[C] (21)

maps the operations among Riemann surfaces to the operations among QFTs. For those who
know the axioms of 2d topological QFT, this can be phrased as follows: a usual 2d topological
QFT takes values in the monoidal category of vector spaces, whereas this topological QFT SG
takes values in (a higher version of) the monoidal category of 4d supersymmetric QFTs.

7. Gaiotto’s construction and mathematical conjectures
Now, consider the equation

SG[
1

2

3

4
] = (SG[ ]× SG[ ]) /−/−/−G. (22)

Note that on the left hand side, G4 are manifestly interchangeable, by the formal property.
There is an action of S4 n G4. On the right hand side, however, we started from two objects
with S3 nG3 symmetry. But by connecting two G, we only have the symmetry

S2 n ((S2 nG2)× (S2 nG2)). (23)

This means that something nontrivial is going on. This non-triviality, however, happens within
the category of QFTs.

We can get something nontrivial happening in something well defined, by applying MHiggs

or SCI. For this, let us take G = SU(2). Then it is known that

Hyp(V1 ⊗ V2 ⊗ V3) = SSU(2)[ ] (24)
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where Vi ' C2 is the defining representation of SU(2). The left hand side correctly has SU(2)3

action, with S3 permuting them. We now have

MHiggs(SSU(2)[
1

2

3

4
])

=MHiggs((SSU(2)[ ]× SSU(2)[ ]) /−/−/−SU(2))

= (V1 ⊗ V2 ⊗ V ⊕ V ⊗ V3 ⊗ V4)///SU(2)

(25)

From the left hand side, it should have S4 permuting four SU(2)s. The right hand side does
not obviously have this symmetry. In fact, the right hand side is the ADHM construction of the
minimal nilpotent orbit of SO(8)C. There is an outer automorphism S3 acting on SO(8), that
provides S4 permuting SU(2)s.

We also have

SCI(SSU(2)[
1

2

3

4
])(u, v, x, y)

= SCI((SSU(2)[ ]× SSU(2)[ ]) /−/−/−SU(2))(u, v, x, y)

= SCI((V1 ⊗ V2 ⊗ V ⊕ V ⊗ V3 ⊗ V4) /−/−/−SU(2))(u, v, x, y)

=
1

2Γp,q(t)Γ′p,q(1)
I(u, v;x, y)

(26)

where I(u, v;x, y) is the hyperelliptic beta integral defined in (4) From the left hand side, we see
that the right hand side should have the S4 symmetry permuting u, v, x, y. This was how it was
conjectured on the physics side in [1]. On the math side, this symmetry was proved completely
independently in [2], as already mentioned.

There are more operations, extracting concrete, well-defined mathematical physical objects
from QFTs. For example, given a G-symmetric QFT Q, there is a vertex operator algebra W (Q)
that has ĝ affine Lie algebra as a vertex subalgebra. Further, W (Q/−/−/−G) is given by something
like the Drinfeld-Sokolov reduction of W (Q) with respect to ĝ, and W (Hyp(R)) is the standard
symplectic boson VOA. This operation was introduced in [5]. Then we have

W (SSU(2)[
1

2

3

4
])

= W ((SSU(2)[ ]× SSU(2)[ ]) /−/−/−SU(2))

= W ((V1 ⊗ V2 ⊗ V ⊕ V ⊗ V3 ⊗ V4) /−/−/−SU(2))

. (27)

This is a VOA that can explicitly be written down, and has four ŝu(2) affine Lie subalgebra.

But the existence of S4 action permuting four ŝu(2) has not been proved. In fact the final VOA

is conjectured to be just ŝo(8)−2, and any mathematician reading this note should consult [5]
and prove it.

Yet another object one can associate to a G-symmetric Q is the Nekrasov partition function
ZNekrasov(Q), which is an element in the equivariant cohomology of the moduli space of
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not well-defined yet
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Figure 1. Relations of various objects discussed in the note.

G instantons. ZNekrasov(Hyp(R)) is determined by the index bundle of the Dirac operator
associated to the representation R of G in the instanton background, and ZNekrasov(Q/−/−/−G)
is also computable, given ZNekrasov(Q).

There are more formal properties satisfied by SG[C] that depends on the complex structure
of C, which was not explained in this note. The ability to permute four points on

ZNekrasov(SG[
1

2

3

4
]), (28)

when carefully analyzed, turns out to imply that there should be a W (G)-algebra action on the
equivariant cohomology of the moduli space of G instantons.

This was how L. Fernando Alday, Davide Gaiotto and the author conjectured the relation
between 4d gauge theory and 2d conformal field theory in [6], although the argument presented
here was streamlined with lots of hindsight today. That conjecture, which has recently proved
by mathematicians, was the main reason the author was awarded a prize in this conference.

8. Conclusions
As a summary, in Fig. 1, the relations of various objects discussed in this note are summarized
in a picture. The steps are simple to understand: we pass from a well-defined realm to a not-
well-defined realm, where some properties are ‘known’. We then pass back to a well-defined
realm again, producing precisely-formulated mathematical conjectures.

The author believes that many properties of QFT that are used to derive new mathematical
conjectures are formalizable. Of course, there will remain some ‘deus ex machina’ in the process.
For example, the existence of the operation

Q 7→ Q/−/−/−G (29)

almost contains the solution to the mass-gap problem. This is because of the following. Seiberg
and Witten have already shown in [7] that, given some basic properties of • /−/−/−G, we can easily
deduce that the pure non-supersymmetric G gauge theory has a mass gap, which is one of the
Clay Millenium Problems.
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Similarly, the existence of the 6d N = (2, 0) theory SG is another ‘deus ex machina’.
But, assuming that, the map C 7→ SG[C] can be constructed rather formally, and many
of the properties follow straightforwardly, in a way understandable to mathematicians and
mathematical physicists. So, we will be able to rigorously show that the symmetry u ↔ x
of the hyperelliptic beta integral I(u, v;x, y) in (4) follows from the existence of SSU(2).

The author hopes that in this way, mathematicians will be able to see which part of the
analysis done by quantum field theorists is truly deep and which part is more mundane.
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