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Abstract.

We present results of a preliminary study intended to quantitatively estimate the
atmospheric transmission and thermal background emission in the mid-infrared (MIR), 7 pm -
26 pm, at the 13N TMT site in Mauna Kea. This is in the interest of supporting the planning
of MIR instrumentation for the posible second-generation of astronomical instruments for the
Thirty Meter Telescope (TMT) project. Mauna Kea, located at high altitude (4,050 m above
sea level), enjoys natural conditions that make it an outstanding location for astronomical
observations in the mid-infrared. The goal of this work is to produce a dataset and model that
shows the atmospheric transmission and thermal emission for two cases of precipitable water
vapor (PWYV), a low value of 0.3 mm, and at 1.5 mm which represent near median conditions at
the site. Besides, and driven by the interest of the MIR community to exploit the daily twilight
times, we look at the specific atmospheric conditions around twilight as a function of season.
The best conditions are found for cold and dry winter days, and in particular the morning
twilight offers the best conditions. The analysis of PWV data, shows the median value for the
site (all year conditions between 6:00 PM and 7:30AM) is 1.8 mm and that periods of water
vapor lower than 1.0 mm are common, these supports the opportunity and discovery potential
of the TMT project in the mid-infrared bands.

1. Introduction

The Thirty Meter Telescope (TMT) Project contemplates the development of MIR
instrumentation (imaging and spectroscopy) for its second generation instruments. In general,
the MIR allows to probe the dynamics and chemistry of regions highly obscured by surrounding
dust, such as is found in the central region of galaxies and star forming regions. Observations in
the MIR enable interesting science, such as: evolution of gas and chemistry in protoplanetary
discs, the study of star and planet evolution (kinematics and physical & chemical evolution),
study of accretion and outflows around protostars, characterization of exoplanet atmospheres as
well as potential for the detection of biomarkers from transmission spectral studies in exoplanet
atmospheres, evolutionary connections of black holes & galaxies. Also, the MIR enables the
study of moderate redshifted objects, the [SIV] line (10.5 um) is an excellent substitute with
superior ground-based sensitivity instead of the [OIV] line. In our solar system, near- and
mid-infrared astronomy allows the study of the thermal structure, chemistry, photo-chemical
products, and dynamics in the thick planetary atmospheres of the giant gaseous plane [1].
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One important limiting factor in the observation at MIR wavelengths (7 um to 26 pum) from
ground-based observatories is the water vapor in our atmosphere. This arises from the water
vapor absorption, due to the complex ro-vibrational spectrum of water vapor molecules, and
added noise in the detectors from atmospheric thermal emission [2]. Consequently, the biggest
difference between the MIR and visible spectral regions, from the point of view of instrument
design, is the large amount of thermal background radiation in the mid-infrared [3].

The overall effect of such limiting factors vary strongly from site to site.

Here we model the atmospheric transmission and thermal background emission in the MIR at
the 13N site; the place chosen for the construction and operation of the Thirty Meter Telescope
[4]. Ultimately, once including information on the thermal emission of the telescope optics (3
mirrors), that of the MIR adaptive optics system as well as the thermal emission in the optics
of a potential MIR instrument, a more general model will be obtained to estimate the signal-to-
noise ratio of astronomical observations in this spectral band and estimate the performance of
the MIR camera and spectrograph when operated as part of the TMT suite of instruments.

Other goals of this study are to summarize the cumulative functions and statistics of
precipitable water vapor at the 13N site, as well as provide information on the median conditions
of surface temperature and ground-layer atmospheric turbulence at the site. All these parameters
are relevant for the modeling of atmospheric transmission in the mid- and far-infrared, especially
in the Q (17 pm to 26 pum) and Z (28 pum to 40 pum) spectral bands. The N mid-infrared band
7.0 pm to 14.5 pm isn’t that sensitive to the water vapor levels in the atmospheric column, but
the wings of this spectral band are limited by atmospheric Os in the middle of the band while
CHy is the major feature at the short end, and COa.

Section 2 presents the datasets and methodology used in this study, section 3 shows the
main results for the site, in terms of main atmospheric characterization and the atmospheric
transmission and thermal background emission in the (7 pm to 26 pm) spectral region, and
finally Section 4 includes the main conclusions of this work.

2. Datasets & Methodology

2.1. Datasets

The most relevant variables on which information is needed to model the atmospheric
transmission and thermal background emission in the MIR includes the atmospheric temperature
and absolute humidity. The best conditions for astronomical observations in the mid- far-
infrared, specially for the @ infrared band are obtained, from very high elevation sites which are
cold and dry [5]. The 13N site in Mauna Kea, with its altitude of 4,050 m above sea level, is
one of the driest places [6] and is already hosting MIR instruments such as TEXES [3] used in
the Gemini North and the IRTF telescopes and COMICS [7] at the Subaru telescope.

For characterization of the PWYV of the 13N site, we used PWV data derived from the
monitoring of optical depths at 225 GHz (7295) using a tipping radiometer! performed at the
Caltech Submillimeter Observatory (CSO) in Mauna Kea and nearby the 13N TMT site?. The
relation used in this study for deriving PWV from 795 is PWV (mm) = 21.422 X 7905 — 0.29503.

Also important is the vertical distribution of absolute humidity in the atmosphere, since low-
level water vapor is responsible for larger collisional broadening of the atmospheric absorption
lines, and so is a source of higher thermal emission. For the vertical profile of absolute humidity
we learned the median profile, for winter conditions at Mauna Kea, from radiosonde soundings
launched from the PHTO 91285 (HILO) National Weather Service station®.

ALMA Memo Series #49, http://science.nrao.edu/facilities/alma/about ALMA / Technology /ALMA_Memo_Series
225 GHz optical depth database at Caltech Submillimeter Observatory, http://cso.caltech.edu/tau/
S Radford, Private Communication

1
2
3
4 Radiosonde soundings database, Hilo station ID is PHTO: http://weather.uwyo.edu/upperair/sounding.html
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The surface temperature data come from the site study® conducted by the TMT site testing
team in the period 2004-2008 [4].

2.2. Methodology

PWYV at the exact location of the 13N site (¢ = 19.8339° N; A = 155.4810° W), was derived
from 2-minute averages of surface measurements of air temperature (7) and relative humidity
(RH) obtained during the TMT site testing campaign in the period 2005/06/29 - 2007/12/31.
For the exact procedure for estimating PWV from surface weather data see [6].

As for the determination of the atmospheric radiance for the MIR, the following steps were
performed:

The radiosonde soundings, obtained from the HILO National Weather Station, were used to
obtain a typical profile of atmospheric temperature and absolute humidity for the Mauna Kea
site. Best conditions of observations in the MIR are achieved in winter time, at low PWV and
cold atmospheric temperatures. The profiles, in the upper troposphere and up to 90km above
sea level, were complemented with data from the US standard atmosphere for winter conditions
[8]. The absolute humidity profile was normalized, and subsequently adjusted for any desired
level of integrated precipitable water vapor.

A line-by-line, layer-by-layer radiative transfer model, implemented in Matlab, making use
of HITRAN [9] spectral line information, was used to derive the layer and total atmospheric
transmission spectra. The radiative transfer model includes the atmospheric composition as
shown in Table 1 of [5], and was run for two cases of PWV, a very dry case (with PWV=0.3
mm) and a near median condition (PWV=1.5 mm).

The physics formulation of the radiative transfer model is out of the scope of this conference
paper. However, suffice is to say that the model output produces the absorption spectra
(Qmot;slayer;), for the following molecular species mol; =Na, Oz, COz, CHy, CO, N2O and
H>0, and for each and all of the atmospheric layers (layer;) defined by the temperature and
water vapor profiles.

The transmission T'rqyer, (A), of each of the atmospheric layers is obtained from the first
expression in the set of equations shown below. The layer emissivity egyer,(A), for each
corresponding layer, is obtained from the complement to unity as follows: €jqyer,(A) =
1 — Trigyer,(A). The radiance of each layer, as a function of wavelength, is obtained from
multiplying the layer’s emissivity and the Planck energy density function evaluated at the
physical temperature of the layer. Finally, the total atmospheric radiance is the sum of all the
atmospheric layers. This form of computing the overall atmospheric radiance is more accurate
than simply multiplying the emissivity of the lowest most atmospheric layer by the corresponding
Planck density function.

Trlayen- ()\) = eXP( Z Oémoljalayeri : dHlayeri)

mol;

RSkylayen- ()\) = Elayen-(A) . 27&%62 f}c )71}

exp( NET;

N
RSkytotal()\) = Z Rlayen-(A) (1)
=1

Multi-annual time series of precipitable water vapor data, surface temperature and surface
turbulence data was analyzed to obtain an statistical characterization of those parameters, in
terms of hourly medians, for the course of the day. This allow us to obtain a perspective on

5 TMT Site testing database: http://sitedata.tmt.org
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how those parameters change through the day and learn their behavior in the period from the
afternoon twilight, through the night and into the morning twilight. The information presented
this way will bring light to the proposal of the MIR community about using one or two hours
of observing time at around morning twilight for additional observing time.

3. Results & Analysis

3.1. Atmospheric transmission and atmospheric radiance in the mid-infrared

Table 1 (insert to Fig. 1) shows the statistical percentiles of PWV out of 352534 values of PWV
(only data in the period 6:00 PM to 7:30 AM local time are used for the statistics) and Fig. 1
shows the cumulative function of PWV for every month in 2012. The cumulative functions
in Fig. 1 illustrate that, when looking at the driest conditions, the driest period is that of
January through April, as shown by the first quartile with a PWV < 0.75 mm. These are also
cold months, as shown in Fig. 4, and together low precipitable water vapor in the atmospheric

column and low low-level temperatures, are the best combination for astronomical observations
in the MIR bands.
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Figure 1. PWV monthly cumulative functions (2012).

In particular, we computed the atmospheric irradiance, following the procedure outlined in
the previous section, for two conditions of PWV: a very dry atmosphere, with PWV=0.3mm, and
a near median condition with PWV=1.5 mm. Figure 2(a) shows the atmospheric transmission,
while Fig. 2(b) shows the atmospheric irradiance. The atmospheric molecular species responsible
for the main absorption bands are CH4 below 8 um, O3 in the vicinity of 9 pym, COs with a
strong absorption band in the range 13 pym - 17 pum, and various absorption lines resulting
from the vibrational spectrum of the HoO molecule in the range from 18 yum to 30 pm. The N
band shows little change with water vapor, but the transmission of the various spectral windows
beyond 18 pm show an increasingly dependance on the water vapor content.

The information shown in Fig. 2(b) can be used to compute the noise, at a particular spectral
window in the detector of a mid-infrared instrument, that originates in the thermal emission of
the atmosphere. For instance, the lowest radiance levels in the region around 11.5 pm wavelength
is of about 2 x 1077 W sr~! cm? pym~! (or 1.16 x 1076 W arcsec™2 cm? ym™1).

3.2. A proposal for using the twilight time for observations in the mid-infrared bands

The MIR community has proposed that one way of maximizing the scientific output of the
telescope could be done by using about 1-2 hours of observing time available in the evening
and/or morning twilights. One example of such approach is the use of TEXES instrument at
the IRTF in Mauna Kea. This has motivated the community to look at how the PWV, air
temperature and turbulence behaves as a function of time through the day at sites of interest.
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Figure 2. a) Atmospheric Transmission Spectrum for two cases of PWV (0.3 mm in blue, and
1.5 mm in read) and for a winter temperature profile condition; b) Atmospheric Radiances for
the same cases of PWV.

In particular, for the 13N site, the PWV data measured at the CSO site in the period of four
years (204-2007), and inferred from observations of optical depth at 225 GHz, was analyzed to
compute the percentage of the time when the PWV was at a given PWYV level as a function of
local time. The calculations were done computing the fraction of the number of cases when the
PWYV falls in a bin of 0.125 mm size (as a function of absolute PWV level) for a time interval
of 15 minutes (through the day) with respect to the total number of observations performed
within that time window in the 4 years of data. Such map is therefore a robust way to show
what is the statistical behavior of PWYV as a function of time of day. The results are shown in
Fig. 3 together with the 25%, 50% and 75% quartiles. This clearly illustrate that the maximum
of PWYV levels is about 0 hours UT (2:00 PM LT). The trend shows that PWV levels decreases
through the afternoon reaching the lowest levels at about 5 UT (7:00 PM LT) and it remains
at low levels until about 19 UT (9:00 AM LT). This is an interesting result. First, PWV in the
atmospheric column is dominated by advection of air masses of different PWV content, but at
low levels there is also a contribution from evaporation and/or sublimation depending on season
and soil moisture condition. This in itself might lead to some variability as a function of time
of day. However, this result is likely also the effect of a near surface temperature inversion that
changes in altitude during daytime, when subsiding then it traps the water vapor below and at
some point the temperature inversion goes below the altitude of the CSO site, allowing a dryer
atmospheric column.

Another important parameter is near surface atmospheric temperature. For this purpose, the
monthly median, as a function of time of day, was computed from data obtained at the 13N site
during the TMT site testing campaign in 2006. The results are shown in Fig. 4. The daily and
monthly temperature cycles are evident, with the coldest months being January, February and
March. Regarding the daily cycle, the near surface atmosphere cools down by radiative processes
starting with sunset and reaching the lowest temperature (near equilibrium) by 15:00-16:00 UT
(5:00 - 6:00 LT). The temperature starts warming up with the sunrise. Stable temperature
conditions are found during the morning twilight.

In this analysis we have also looked at the behavior of near surface atmospheric turbulence.
The turbulence strength (C2), was derived from fast temperature fluctuations observed with
a Sonic anemometer operating at 30 Hz. The monthly median of C2 as a function of time of
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day (with a time resolution of 15 min) are shown in Fig. 5. Again, the lowest conditions of
near surface turbulence are observed towards the end of the night into the morning twilight,
this as a result of lower variability in the air index of refraction due to the fact the atmospheric
temperature by this time of day has reached near equilibrium. However, in terms of absolute
magnitude of the turbulence Fig. 5 also shows that the months of lowest absolute turbulence
-at night and towards the early morning- are the spring and summer months. The reason for
this is that the optical turbulence is proportional to the index of refraction fluctuations, which
in turn have origin in fractional changes of air temperature. Therefore, in the summer months
with higher atmospheric temperatures, the fractional fluctuations are lower and this translates
into lowest C2.

So what is best, the afternoon or the morning twilight for MIR astronomy? Based on the
findings shown in here, is no doubt that the morning twilight, with a drier atmospheric column
(due to the local temperature inversion layer located at altitudes lower than the observatory
sites), and colder near surface atmospheric conditions (due to the radiative cooling of the site)
which have also allowed the telescope structures to reach their lowest temperature, together
with lower near surface turbulence (because of atmospheric temperatures show lower fractional
variability), make the morning twilight a great temporal window for astronomical observations
in the mid-infrared.

3.83. Would it be possible to predict periods of low PWV?

The atmosphere is highly unsaturated with respect to water vapor, which is limited by the
air temperature through energy considerations. Local sources of water vapor, originating from
sublimation of snow/ice, and evaporation of surface waters as well as diffusion of water vapor
from sub-surface, are to be considered as important sources of humidity at very dry sites.
However, the water vapor field is highly dominated by synoptic and mesoscale dynamics, where
the location of high and low pressure centers with respect to a site location become very relevant
in the advection of wet and or cold air. Therefore, PWV can be forecasted by means of a
mesoscale model [10, 11]. PWV in the Hawaiian Islands is strongly influenced by the location of
the Hawaiian High pressure center, which could either bring cold and dry air from the northern
latitudes, or warm and wet from the southern latitudes, respectively.

How often and for how long do the dry atmospheric conditions remain? This is an important
question. Without generalizing, but as a way to show an example of PWYV conditions at Mauna
Kea we looked at the PWV gathered at the CSO site (with 10 min time resolution) in 2012.
With this the nightly median value of PWV was calculated for each day in 2012, results are
shown in Fig. 6. This illustrate that dry conditions, with PWV lower than 1 mm, are usual at
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Mauna Kea with advection of very dry air (PWYV lower than 0.5 mm) that extend for various
days. See for instance, the dry conditions at around day 35 (early February), day 80 (second
half in March), day 120 (beginning of May) and day 180 (end of June/beginning of July). This
helps to illustrate that when dry conditions occur they tend to stay for several days in agreement
with conditions controlled by synoptic scale atmospheric conditions. By the same argument the
upper plot in Fig. 6 shows various occasions of advection of wet mass air.
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Figure 6. 2012 Nightly mean and its uncertainty of PWV (in mm) at Mauna Kea. The bottom
figure limits the vertical scale to 1.1 mm of PWV. The red line shows the 1 mm PWYV level and
helps as a visual reference to identify all the cases when PWV was lower than 1 mm at the CSO
site.

4. Conclusions & Future Work

Astronomical observations in the MIR bands, specially in the Q band, require a dry and cold
site to minimize the noise arising from thermal emission of the atmosphere as well as minimize
the atmospheric absorption of the astronomical signals. The 13N site, location for the Thirty
Meter Telescope, was studied through a site testing campaign effort between 2004 and into
2008. Continuous measurements of PWV have been conducted at the location of the Caltech
Submillimeter Observatory for many years. The atmospheric radiance under median conditions
of the site in Q band is around 2 x 107'® W arcsec™! cm™2 pum ™! and down to less than 1071° W

arcsec” ! em™2 ym~! in very dry conditions (0.3 mm of PWV). In the N band, the atmospheric

radiance get as low as 10717 W arcsec™! ecm™2 pm™1!.

The analysis of site testing data, including temperature and near surface turbulence strength,
indicate that optimum conditions are found around morning twilight (between 5:30 AM until
7:30 AM Local Time) when the atmospheric column is usually the driest, colder and more stable.
By morning twilight, it is expected that the telescope structures have reached equilibrium with
its environment minimizing noise arising from thermal emission scattered from the telescope
structures into the mid-infrared detectors.

The atmospheric radiance information, as calculated in this study and shown in Fig. 2 can
be used as input for the determination of the thermal emission arriving at the detector of a MIR
instrument, a source of noise in the detector. The overall thermal radiance into the detector is a
function of, the number of mirrors in the telescope, the optical throughput of the the telescope
optics, the thermal emission of the Adaptive Optics instrument, and the quality of the mid-
infrared instrument optics. Equation 2, in a generic way, includes the terms relevant for the
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determination of the thermal background radiation arriving at the mid-infrared detector), the
results in this work can be used to determine that quantity provided all relevant parameters are
know.

Riotat(N) = teer(A) - tao(A) - tmiarr(N) X Rskyrotar(N)
+ tAO(A) : tmid]R(A) X Rtelescope()\)
+ tmidrr(A) X Rao(A)
+ Riarre(A) (2)

Where;

Riotai(A) is the total thermal background radiation reaching the mid-infrared detector. t; (),
tao(N), and t,arr(N) are the optics throughput of the telescope, AO instrument and of the mid-
infrared instrument, respectively. Riciescope(A) is the thermal emission of the telescope’s mirrors,
and this can be taken as the summation of each of the mirrors’ emissivity multiply by the Planck
function at the physical temperature of the mirrors (considered the ambient temperature), i.e.
€(A) - Planck(A,T). Similarly, R4o()) is the thermal emission from the AO system that goes
into the mid-infrared instrument. Finally, R,,;qrr(\) is the internal thermal emission of the
mid-infrared instrument itself.
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