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Aglaé Kellerer

University of Cambridge, Cavendish Laboratory, JJ Thomson Av., Cambridge, CB30HE, UK

E-mail: ak935@cam.ac.uk

Abstract.
We discuss a layer-oriented approach to multi-conjugate adaptive optics (MCAO) in solar

imaging. The technique is a complement to the current star-oriented MCAO and appears as a
necessary alternative when large field sizes are desired in solar observations. The basic procedure
of the layer oriented method is indicated, and its characteristics are then illustrated in terms of
numerical simulations.

1. Introduction
To obtain wide-field images of the solar surface one corrects the atmospheric turbulence through
multi-conjugate adaptive optics. MCAO uses several deformable mirrors to correct separately
the phase distortions caused by turbulence in atmospheric layers at different altitudes. To this
purpose one needs to estimate the phase distortions produced at these different altitudes. This
information is obtained by using not just one wavefront sensor – as in conventional AO – but
by tomographic evaluation of the phase profiles measured by several wavefront sensors.

The established method in solar MCAO uses the star-oriented approach (SO) [1, 2] where
the wavefront distortions are sensed across the telescope pupil for, say, 19 directions distributed
over the field of view. The 19 phase measurements permit then a tomographic estimation of
the phase fluctuations caused in the different layers conjugated to the deformable mirrors. Solar
AO uses Shack-Hartmann (SH) wavefront sensors, where each SH lenslet images an element
of the solar surface, rather than an unresolved star in nighttime AO. The field width must,
therefore, be somewhat larger for each lenslet, which means that the effective area sensed by
it increases sufficiently at high layers for the signal to be slightly washed out [3]. While the
weakened signal from higher altitudes is an undesirable feature in the star-oriented method,
the tomographic method does work adequately, as long as the field width remains reasonably
narrow. The correlation of solar SH images requires typically 20×20 pixels of angular resolution
0.4′′. With this 8′′ viewing angle, a 0.10 m diameter sub-aperture covers then a 0.41 m diameter
surface at 8 km.

Yet one may consider the opposite case where – on purpose – the viewing angle of each
lenslet is made as wide as the total viewing angle (i.e. the science field). If conjugated to
the telescope pupil, the sensor then registers predominantly the phase distortions caused near
the ground, while the signal from higher altitudes is largely washed out. This suggests a fairly
straight-forward alternative to the star-oriented approach. Using a few sensors conjugated to
the most relevant altitudes one would have a method that conveniently provides the information
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for different layers directly. More importantly the method works best for the largest fields of
view, because such fields permit the most effective zeroing-in on the specified layer. This layer-
oriented approach (LO) has, in fact, been introduced successfully for night-time MCAO [4, 5, 6].
For solar observations it has not been utilized, and it will require different procedures there, but
we propose that the technique be introduced as useful complement to the current SO-MCAO in
solar imaging and, in fact, as a necessary alternative when large field sizes are desired in solar
observations [7, 8]. First the basic procedure will be indicated, then the characteristics of this
layer oriented method for solar observations will be illustrated in terms of a few simulations.

2. Principle of solar layer-oriented MCAO
In the star-oriented approach each sensor assesses, across the telescope pupil, the phase shift
of the photons incident in the specified direction. In the layer-oriented approach each sensor
assesses, across the conjugate altitude, the mean phase shift of the photons incident from the
entire field of view. Since the fluctuations from other altitudes tend to average out, the sensor
registers predominantly the fluctuations due to the conjugated altitude.

Night-time layer-oriented systems employ for this purpose pyramid sensors [4, 5, 6]. Each
pyramid collects the light from one guide star, and the light from the different stars is then
combined on a detector optically conjugated to the specified altitude. This is not a suitable
solution in solar AO, where one deals with an extended source rather than multiple point sources.
We have therefore suggested to implement the layer-oriented approach with SH sensors [7, 8].
The method is now briefly described.

In conventional AO the lenslet array of a SH sensor is conjugated to the telescope pupil, and
the detector in the focal plane of the array registers for each lenslet an image of the observed
solar area. In the layer-oriented approach, additional lenslet arrays are conjugated to dominant
turbulent layers. Each lenslet images the entire field of view, but – as indicated in Fig. 1 –
the image contains only those parts of the solar surface for which some of the emitted photons
traverse on their way to the telescope pupil this lenslet. Fig. 1 depicts for three different altitudes
the images registered behind each lenslet.

Figure 1. In a layer-oriented MCAO system the lenslet array of a SH sensor is conjugated
to a turbulent layer (left, middle, right panels: 0 km, 4 km and 10 km) and the sensor registers
predominantly the phase fluctuations produced at that altitude.

The vignetting of the lenslet images is no artefact of the layer oriented method, it merely
reflects the fact that – at the higher altitudes – photons from only part of the observed solar
area traverse the particular sub-pupil on their way to the telescope pupil; merely these photons
experience the atmospheric turbulence at this location and require the corresponding phase
correction.
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Consider a simplified scenario where the turbulence is located at the conjugate height of a
SH sensor: the image behind a lenslet is globally shifted, because the phase fluctuations are
independent of the field direction. If, on the contrary, the turbulence is located far from the
conjugate height, then the fluctuations vary with field direction and the SH images are distorted
rather than shifted. In the layer-oriented approach, the image shift forms the sensor-signal; it
is an approximation of close-by turbulence and is used to shape the deformable mirror that is
conjugated to the same height as the sensor.

As an aside we note that the wavefront distortions are sensed continuously over the entire
field of view: the correction loop therefore automatically converges to an optimal solution for
the entire field of view. This contrasts with the star-oriented approach where the correction for
the entire field is extrapolated from measurements along multiple discrete directions.

3. Reduction of the field-of-view to the relevant photon fluence
As shown on Fig. 1, SH lenslets that are conjugated above the pupil form vignetted images.
Assume that the turbulence is located in two layers: at the ground and 4 km. One aims at
determining the phase fluctuations introduced over a small surface S of the 4 km metapupil: see
Fig. 2.

In the solar layer-oriented approach, a SH lenslet is optically conjugated to surface S. The
signal measured behind this lenslet corresponds to the phase gradient introduced over S plus
the gradient over a larger surface at the ground. In Fig. 2 this larger surface corresponds to the
intersection between the pupil and the disc traced out by the field-of view: only the photons that
end up in the intersection with the pupil (i.e. are accepted by the telescope in normal operation)
traverse S. It has been suggested that the layer-oriented method is inoperable because the field-
reduction restricts the effective surfaces at mis-conjugated altitudes, and thereby weakens the
attenuation of mis-conjugated layers [9]. In fact field reduction affects any MCAO system, i.e. the
star- and layer-oriented approaches in their night- and daytime implementation. And it affects
existing MCAO approaches more strongly than the proposed solar layer-oriented method.

Figure 2. Solar layer-oriented
MCAO: Atmospheric fluctuations
at S affect only part of the field-
of-view. A SH lenslet conjugated
to surface S characterizes, at the
ground, the phase fluctuations in
the intersection between the pupil
and the disc traced-out by the field
of view.

In a nighttime layer-oriented system, a detector – rather than a lenslet array – is optically
conjugated to a turbulent layer. The fundamental principle of both layer-oriented methods are,
however, identical: signals from mis-conjugated layers are attenuated because the corresponding
phase fluctuations are averaged over larger effective surfaces. In the nighttime implementation,
the averaging is done over the footprints of multiple guide stars. Fig. 3 assumes three guide
stars. For the detector pixels conjugated to surface S the signal from the ground layer is
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not attenuated because only one star lies within the unvignetted field-of-view. This example
illustrates that field-reduction has more drastic consequences in nighttime than in solar layer-
oriented MCAO: indeed, because of the continuous solar fields, mis-conjugated layers are always
somewhat attenuated in the solar application. Since the layer-oriented approach has been
successfully implemented in nighttime MCAO, field-reduction can also not be a limitation for
the solar application.

Figure 3. Nighttime layer-
oriented MCAO: For the sensor el-
ements conjugated to surface S the
signal from the ground layer is not
attenuated because only one star
lies within the unvignetted field-of-
view.

4. Simulations
Some numerical simulations in terms of Yao, an adaptive optical simulation code written by
F. Rigaut under Yorick can illustrate the proposed method. We have written additional
functions under Yao in order to simulate solar observations and wide-field Shack-Hartmann
sensors conjugated above the telescope pupil.

Assume three sensor-mirror pairs conjugated to 0 km, 4 km and 10 km. The sensors (mirrors)
have 8, 8 and 16 lenslets (9, 9 and 17 actuators) across the diameter. Each sensor samples a 100′′

diameter field with 0.5′′ resolution. The telescope diameter equals 1.6 m. The signal measured
by a sensor is exclusively used to activate its associated mirror: in other words, once the sensor
signals are determined, the tomographic reconstruction is done.

Fig. 4 shows the effect of a single layer at ground level. The Fried parameter is set to
r0 = 0.15 m. As expected, the turbulence is mainly detected by the sensor conjugated to
the ground, while the two other sensors measure a negligible signal: After one iteration, the
mirror conjugated to the ground reproduces the shape of the turbulent screen while the two
other mirrors remain nearly flat. The system has assimilated that the turbulence is introduced
at the ground – the tomographic reconstruction is successful.

Fig. 5 represents the effect of a single layer at 4 km with Fried parameter r0 = 0.15 m. The
system again responds correctly: the mirror conjugated to 4 km takes up the shape of the phase
screen, while the two other mirrors remain approximately flat.

The effect of a single turbulent layer at 10 km with Fried parameter r0 = 0.50 m is illustrated
on Fig. 6. After one iteration, the mirror conjugated to 10 km replicates the phase screen, but
the 4 km mirror likewise reproduces the lowest spatial frequencies of the screen: The sensor
conjugated to 4 km has measured some signal – field-reduction has made the attenuation of
distant layers less efficient. After a few iterations however, the mirror conjugated to 4 km
flattens out because the sensor-mirror pair at 10 km is more efficient at correcting the phase
fluctuations.
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Figure 4. Effect of a single layer at ground level: After one iteration, the mirror at ground
level reproduces the shape of the phase screen while the two other mirrors remain almost flat.
The system has assimilated that the turbulence is located at ground level.

Figure 5. Effect of a single layer at 4 km: After one iteration, the mirror conjugated to 4 km
replicates the shape of the phase screen while the two other mirrors remain almost flat. The
tomographic reconstruction is correct.

5. Conclusion
Table 5 summarizes differences between star- and layer-oriented solar MCAO correction. A
complication of the layer-oriented approach is that it requires rapid cross-correlations of large
images. Further, it necessitates ∼ 2000 × 2000 pixel detectors that can be read-out above
1000 Hz. The availability of such detectors is currently the main challenge for the solar layer-
oriented approach.
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Star-oriented Layer-oriented
High-turbulence Signal from high turbulence is

attenuated
Each sensor is most sensitive
to its associated layer

Spatial and tempo-
ral sampling

..tuned to integral turbulence ..tuned to associated layer

Tomographic
reconstruction

..becomes more complex with
increasing field size

..benefits from large field
sizes

..is done computationally ..is done optically
Cross-correlation ..over ∼ 20×20 pixels ..over ∼ 200× 200 pixels: compu-

tationally intensive
Detector require-
ment

Small detectors or large de-
tectors with ROI read-out

Large detectors with high read-
out frequencies

Table 1. Comparison between star- and layer-oriented solar MCAO. Advantages in bold.
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