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Abstract. We examine current methods of numerically implementing Compton scattering in
the context of intense laser-matter interactions. In a recent publication [1] it has been shown
that a commonly used approach generates the correct spectra in nearly all cases, except those
when the harmonic structure is important. Here we provide an explanation for this using an
alternative, classical argument.

1. Introduction
Recent technological advances have led to the development of lasers with unprecedented powers
and intensities. The current record was set by the HERCULES laser in 2008, when it achieved
a peak focal intensity of 2 × 1022W/cm2 [2]. This upward trend is expected to continue
into the future, with numerous facilities being developed to provide ultra-intense laser fields.
These include the Vulcan 10 PW upgrade [3] which is expected to provide peak intensities of
1023 W/cm2. In the longer term we look forward to the European “Extreme Light Infrastructure”
(ELI) Facility [4] and the XCELS project [5], both of which may surpass this intensity by a
further order of magnitude.

These developments have led to a renewed interest in probing strong-field quantum
electrodynamics (QED) using high-intensity laser fields [6, 7, 8] as well as in a number of
applications [9, 10]. However, the new generation of facilities will achieve such ultra-intense
conditions, in part, by a strong focusing of the beam. So far, the majority of analytical QED
calculations are limited to plane-wave models which do not capture the structural features of
strongly focussed fields. Additionally, multiple QED processes can take place while the particle is
in the field, even leading to runaway cascading. Describing such situations analytically is almost
impossible and so one is forced to resort to numerical methods (However, see the recent paper
[11]). The standard numerical techniques for modelling QED processes in a laser field involves
propagating a particle classically thorough a field and then using statistical event generators to
determine various QED transition processes [12, 13, 14].

If we are to rely on these numerical methods, we must first verify their accuracy and gain a full
understanding of their limitations. This is best done by considering problems that can also be
solved analytically to which explicit comparisons can be made. Such problems are, however, few
in number. In this paper we will study the accuracy of these numerical techniques, restricting
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ourselves to one such process, the Compton scattering of an electron, for which an analytic
solution can be obtained. We outline the differences between the exact analytical calculation of
the emission spectra and those obtained via numerics based on discrete time approximations.
We also present a classical argument explaining why discrepancies occur.

2. Outline of numerical techniques
While all of the codes used by the high-intensity laser community have their differences, they
are all designed with the same general principles at their heart (see, for example, [15]). For the
purposes of this study we consider the single-particle QED program SIMLA [16, 17], recently
developed by the authors, whose operation we now briefly describe.

Working in natural units where ~ = c = 1, we describe the laser field using the dimensionless
intensity parameter a0 = eE/ωm, where e is the electron charge, m the rest mass, E the
peak amplitude of the electric field and ω the laser frequency. The importance of quantum
effects can be measured by considering the (invariant) quantum efficiency parameter χe ≡√

(Fµνpν)2/m2 ∼ γE/Ecr, where Ecr = 1.3 × 1016 Vcm−1 is the QED ‘critical’ field (‘Sauter-
Schwinger’ field) [18, 19, 20]. This parameter is equal to the work done by the laser field on
the particle over the distance of a Compton wavelength. Thus, when χe

>∼ 1 quantum effects
dominate and processes such as vacuum pair production occur. For the purposes of this work
we will restrict our attention to the regime where a0 � 1, χe ≤ 1, such that quantum effects
will play a role, but at the same time we can neglect processes such as pair production. In the
high-intensity limit a0 � 1 the size of the radiation formation region is of the order λ/a0 � λ,
where λ = 2π/ω is the laser wavelength [21]. Thus the laser varies on a scale much larger than
the formation region and so can be approximated as locally constant and crossed, allowing us
to determine the probability of photon emission using the expression for the constant field rate
Γ [21]

dΓ =
αm√
3πγχe

[(
1− η +

1

1− η

)
K2/3(χ̃)−

∫ ∞
χ̃

dxK1/3(x)

]
dχγ , (1)

where α is the fine structure constant, Kν is the modified Bessel function of order ν, η ≡ χγ/χe,
χ̃ ≡ 2η/ [3χe (1− η)], and χγ ≡

√
(Fµνκν)2/m2 is the analogous quantum efficiency parameter

for a photon emitted photon with momentum κν .
Note that although dΓ diverges at small χγ , the total differential probability of photon

emission (i.e., of any χγ), dW = Γdt, where Γ ≡
∫ χe
0 dΓ, is finite (see also [22]). It is common

to model the trajectory of the electron through the field classically and then to correct its
momentum after every time step using statistical routines to calculate the photon emission
rates using the constant field rate. It is important to note that this is not equivalent to what
happens in a full, analytical calculation. In normal QED calculations scattering amplitudes are
determined using asymptotic ‘in’ and ‘out’ states (see e.g., [23]). No assumptions are made
about the electron’s trajectory in the laser. One simply begins with an in-state momentum
at t = −∞ and calculates the out-state momentum at t = ∞ without determining how the
electron moves in between. In contrast, in the numerical method we are continuously tracking
the electron orbit.

The statistical routines that determine the photon emissions are implemented in the following
manner. At each time step a uniform random number r ∈ [0, 1] is generated, and emission
deemed to occur if the condition r ≤ Γdt is satisfied, under the requirement Γdt� 1. Note that
during the simulation dΓ (and thus Γ) is a time-dependent quantity owing to the effect of the
temporally varying laser pulse and electron motion. Given an emission event, the photon χγ
is determined as the root of the sampling equation ζ = Γ(t)−1

∫ χγ
0 dΓ(t), where ζ is a uniform

random number ζ ∈ [0, 1] (In practice we implement an infra-red cut-off so that the code does
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not include the emission of large numbers of low energy photons; the integral is performed from
a lower limit ε ∼ 10−5, rather than zero. The emission of soft photons of energy below this cut
off does not appreciably affect the electron dynamics (see e.g., Ref. [24]).). Next, we calculate
the photon momentum from χγ assuming that the emission is in the direction of motion of
the electron. This is valid for γ � 1, since in reality the emissions will be in a cone of width
γ−1 [25, 26]. Finally, the photon momentum is subtracted from the electron momentum and the
simulation proceeds by propagating the particle via the Lorentz equation to the next time step.

3. Comparisons
We now present a comparison of the numerical photon spectra produced by the SIMLA program
with that obtained via the full analytic calculation. The emission spectra can be calculated
exactly for an electron in an infinite plane-wave field, details of the calculation can be found in
Refs. [27, 28, 26]. Although we can’t run a numerical simulation for an infinite plane-wave field,
we can closely approximate such a field using a plane wave with a super-Gaussian temporal
profile. The emission spectra in such a field closely resembles that of an infinite plane wave,
retaining most of the structural features [29]. In figure 1 we show the emission spectrum
calculated analytically (for an infinite plane wave) together with that calculated numerically
for an electron in a degree-8 super-Gaussian field. The laser intensity a0 = 20 with wavelength
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Figure 1. Comparison of the an-
alytical and numerical frequency
spectra. Parameters are a0 = 20,
γ0 = 9000. Black line: analytical
spectrum, blue line numerical spec-
trum.

λ = 0.8µm and the initial electron γ0 = 9000. The parameters have been deliberately chosen
to emphasis certain structural features in the spectrum. It can be seen that while in general
the numerical spectrum matches the analytical spectrum very well, it fails to reproduce certain
structural features (caused here by the first and second harmonics). It turns out to be true in
general that the numerical method reproduces the correct spectra except that it averages over
the structural features. A detailed analysis for a wide range of parameter regimes is presented
in Ref [1].

4. Classical analysis
In these proceedings we explain the discrepancy between the full analytically calculated spectra
and that obtained using the numerical method by employing a classical argument.

The expression describing the classical radiation emission of a particle can be found in
most textbooks on electrodynamics (see, e.g., [25]). Here we adopt the less common covariant
formulation which can be found, for example, in [30]. The four-momentum of the emitted
radiation can be written

Pµ = −
∫

d4k′

(2π)3
sgn(k′0)δ(k′2)k′µj(k′) · j∗(k′), (2)
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where sgn is the sign function, k′µ = ω′(1, sin θ cosφ, sin θ sinφ, cos θ) is the vector of the emitted
radiation, where θ and φ are the polar angles that determine the direction of the photon, and

jµ(k′) = e

∫
dτ uµ(τ)e−ik

′·x(τ), (3)

is the Fourier transform of the electron current, where u and x are the four-velocity and four-
position of the electron, respectively. However, the boundary conditions can result in an infra-red
divergence which means it is advisable to regulate the integral: see [31] for a fuller discussion.
The resulting expression is

jµ(k′) = e

∫
dτ e−ik

′·x(τ) d

dτ

(
uµ

ik′ · u

)
. (4)

Performing an integration by parts we find

jµ(k′) = e
uµ

ik′ · u
e−ik

′·x(τ)
∣∣∣∣τ=+∞

τ=−∞
+ e

∫
dτ uµ(τ)e−ik

′·x(τ), (5)

which is (4) with the addition of some boundary terms. Now, returning to our calculation, the
radiated energy is given by the zero component of (2)

P 0 ≡
∫
dω′dΩω′

d2Nγ

dω′dΩ
, (6)

where

ρ ≡ d2Nγ

dω′dΩ
= − ω′

16π3
j(k′) · j∗(k′), (7)

is the classical spectral density, which gives the ‘number of photons’ Nγ radiated per unit
frequency per unit solid angle.

It is possible to formulate a classical equivalent of the QED numerical scheme by dividing
the particle orbit into discrete segments, evaluating (6) for each segment, and then adding
the resulting spectra together to obtain the total spectrum. Proceeding this way, the electron
four-current (4) becomes

jµ =

∫ τ2

τ1

(· · · ) +

∫ τ3

τ2

(· · · ) + . . .+

∫ τn

τn−1

(· · · ) . (8)

Clearly, dividing the integral up into segments and summing the result from each segment as
such will not alter the final result of the current. However, when it comes to calculating the
spectral density (7) this is not the case, as, of course,

ρ ∼ j · j =

[ ∫ τ2

τ1

(· · · ) + . . .

]
·
[ ∫ τ2

τ1

(· · · ) + . . .

]∗
(9)

6=
[ ∫ τ2

τ1

(· · · )
]2

+

[ ∫ τ3

τ2

(· · · )
]2

+ . . .+

[ ∫ τn

τn−1

(· · · )
]2
, (10)

since, by calculating the spectral density in stages using each discrete segment of the four-current
at a time, we are in effect throwing away the cross terms.
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Figure 2. Top panel: The classi-
cal emission spectra calculated for
an electron of initial γ0 = 100
colliding with a linearly polarised
laser of intensity a0 = 1.5, wave-
length λ = 0.8µm and with a Gaus-
sian time envelope of duration 30 fs
FDHM. Black line: spectrum cal-
culated using full orbit. Blue line:
spectrum calculated by splitting to
orbit into two segments, calculating
the spectrum using each half-orbit
and then summing. Red line: spec-
trum calculated by splitting orbit
into four. Green line: spectrum cal-
culated by splitting orbit into eight.
Bottom panel: Zoom into the first
harmonic of the top panel.

The evaluation of (6) is a very numerically expensive procedure, especially for large a0. We
are aided in this respect by the fact that the program SIMLA uses a nonlinear time grid. (Other
techniques to improve efficiency can be found in refs. [32, 33].) However, we do not have the
same constraints in the classical modelling as we do in the QED case. This is because we have
the full orbit (and, by implication, the full properties of the field) over each segment, so it is
not necessary for us to make any constant field assumptions. We just require that the classical
‘formation length’ (see, e.g., [34, 32]) is shorter than the size of the discretisation. Thus we can
perform our analysis with a much lower a0 than is valid for the QED method.

In figure 2 we show the classical emission spectra, calculated by dividing the orbit into various
numbers of segments. It can be seen very clearly that, as we divide the orbit, the neglect of the
cross terms in (10) causes a smoothing of the structural features of the spectrum, just as we saw
in the QED case. It appears that the discretisation causes an averaging of the emitted energy.
To prove this we consider the total radiated energy as given by Larmor’s formula [25]

P = −2

3

e2

m2

∫
dτ

dpµ
dτ

dpµ

dτ
. (11)

Since (11) is a function of the acceleration only, it is possible to split the integral up, evaluate
each segment separately, and add the parts together without changing the result. This means
that the total radiated power is conserved by the discretisation, even though the spectral density
is changed. Hence the discretisation averages over the structural features of the spectrum.
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5. Summary
We have analysed the commonly used numerical technique based upon the idea of splitting a
classical electron orbit into discrete segments, and then correcting the momentum over each
of these segments using a QED-derived photon emission rate. In a previous paper [1] it has
been shown that this method reproduces the correct spectra (calculated analytically) reasonably
well, except that it fails to reproduce certain structural features of the spectra. By adopting
an analogous classical approach we have shown that, in dividing the orbit up into discrete
segments, we neglect cross terms which provide information about the field. The shorter these
segments become the more information is thrown away and the flatter the spectrum becomes.
However, the total radiated energy remains constant, meaning that the result of discretisation
is an averaging over the structural peaks and troughs of the spectrum.
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