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Abstract. The creation of scalar particle pairs due to the decay of a highly energetic gamma
quantum traveling in a laser field comprising two independent modes is considered. Employing
the framework of strong-field scalar QED, detailed calculations aiming at two different aspects of
the process are presented. We first investigate interference effects between reaction channels with
absorption of different numbers of laser photons with commensurate frequency and demonstrate
the possibility of coherent phase control. Then we study numerically a scheme of dynamical
assistance, which offers prospects for an experimental realization of a Schwinger-like pair
production process.

1. Introduction
The collision of two energetic photons can lead to the creation of electron-positron pairs and
is known as the Breit-Wheeler process [1]. Employing instead a laser of frequency ω, a certain
number n of laser photons may contribute to the pair creation process [2, 3, 4], which can be
written symbolically as

ωγ + nω → e+e−, (1)

where ωγ is the frequency of the gamma quantum. This multiphoton Breit-Wheeler process has
already been verified experimentally in the SLAC-E144 experiment [5].

Proceeding to a high laser field-strength E while keeping its photon energy small, such that
the field-strength parameter ξ = eE/mω clearly exceeds unity while χ = 2ξ ωγω/m

2 � 1, the
particle creation rate scales as [2, 3]

R ∼ αm2

ωγ
χ3/2exp

(
− 8

3χ

)
(2)

revealing a non-analytic dependence on the laser field-strength. Here, α denotes the fine-
structure constant, m the electron mass, and we use relativistic units with � = c = 1. A
similar behavior is seen for the famous Schwinger effect [6, 7], which refers to the creation
of electron-positron pairs from the vacuum resulting from the application of a constant electric
field. This fundamental effect has not yet been seen experimentally due to the high field strength
E ∼ Ecr = m2/e ≈ 1016V/cm required.

In this contribution, we will investigate a setup comprising two co-propagating laser beams
of different frequencies and intensities which both give contributions to the pair creation process
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induced by the collision with an additional counter-propagating gamma quantum. Symbolically,
we have

ωγ + n1ω1 + n2ω2 → e+e−, (3)

where the indices 1, 2 refer to the respective laser mode. The addition of the second reaction
channel facilitates quantum mechanical interferences [8], which are most prominent for low-
intensity lasers and may affect the angular distribution of the particles as well as the total rate;
see [9, 10, 11] for related studies on the Bethe-Heitler process. We will demonstrate these effects
by investigating the influence of a relative phase shift between the laser modes.

Furthermore, following the proposal of dynamical assistance [12], we demonstrate how a
suitable combination of a high-intensity yet low-frequency laser with an additional low-intensity
yet high-frequency laser can drastically increase the Schwinger-like pair creation process and
finally render the effect visible in today’s labs.

We will present detailed calculations following an S matrix approach within strong-field scalar
QED, allowing us to treat the laser field non-perturbatively. For the sake of analytical simplicity,
we neglect the particle spin. Nevertheless, we shall denote the produced particles as electrons
and positrons. For an investigation of spin effects in intense fields, we refer to [13, 14]. Recent
studies on Breit-Wheeler pair production in intense laser pulses can be found in [15, 16, 17].

2. Theoretical Framework
The pair creation process is formally described as the transition of a laser-dressed (spinless)
electron from the negative to the positive continuum induced by the absorption of the gamma
quantum, which is described as a single mode of the quantized radiation field. The depleted
particle state with negative energy finally corresponds to the anti-particle.

The transition amplitude is given by the S matrix element

S = −i

∫
dt 〈Ψp− |Ĥint|Ψp+,γ〉 (4)

where the initial state |Ψp+,γ〉 = Φp+ |kγλγ〉 is a product state of the laser-dressed electron with
negative energy given by the state Φp+ and a singly occupied radiation mode with wave four
vector kμγ = (ωγ ,kγ) and mode index λγ . The final state |Ψp−〉 = Φp− |0〉 contains the laser-
dressed electron in the positive continuum and the depopulated radiation mode. The absorption
of the gamma quantum is described by the field operator

Âγ =

√
2π

V ωγ
e−i(kγx) εγ ĉkγλγ (5)

with polarization vector εγ , annihilation operator ĉkγλγ and a normalizing volume V . The
interaction Hamiltonian thus reads

Ĥint = −ie

(
Âγ ·

→
∇−

←
∇ · Âγ

)
+ 2e2AL · Âγ (6)

where AL is the vector potential of the laser field.
The laser field consists of two independent modes of frequencies ωj , j = 1, 2 which are linearly

polarized in orthogonal directions ej and propagate in the same direction n. Its vector potential
in radiation gauge accordingly reads

AL = A1 +A2 , Aj(ηj) = aj cos(ηj − ϕj) ej (7)
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where we have introduced phase variables ηj = (kjx) = ωj(t − n · r), which are related to
the wave four vectors kμj = ωj(1,n), and phase shifts ϕj . We measure the amplitudes in a

Lorentz-invariant manner with ξj =
eaj
m .

We obtain the laser-dressed states for a particle with charge ±e and free four-momentum
pμ± = (Ep± ,p±) from the Gordon-Volkov states

Φp±(x) =
1√

2Ep±V
ei[±(p±x)−Λ1−Λ2] (8)

which, due to the perpendicular polarization directions, separate into contributions from each
laser mode alone with

Λj =
1

(kjp±)

∫ ηj

[ep± ·Aj(η̃)∓ e2A2
j (η̃)]dη̃ . (9)

The interaction between the particles and the laser-field is hereby taken into account non-
perturbatively.

The time-averaged motion of the particles in the laser field is reflected in the laser-dressed
momenta qμ± = pμ± + 2kμ1 y

±
1 + 2kμ2 y

±
2 , which occur naturally in this approach and are expressed

using the abbreviation y±j =
e2a2j

8(kjp±) . The particles experience a mass increase by virtue of

(q±q±) = m2∗, leading to the laser-dressed mass m∗ = m[1 + 1
2(ξ

2
1 + ξ22)]

1/2.
In order to carry out the space-time integration in Eq. (4), the integrand can be Fourier

decomposed using generalized Bessel functions J̃n(u, v) which fulfill ei(u sin(φ)+v sin(2φ)) =∑∞
n=−∞ J̃n(u, v)e

inφ. The generalized Bessel functions can be written in terms of ordinary

Bessel functions as J̃n(u, v) =
∑∞

l=−∞ Jn−2l(u)Jl(v) [18]. Applying this method to each of the
laser modes separately, we finally arrive at

S = S0

∞∑
n1,n2=−∞

Mn1,n2 e
i(n1ϕ1+n2ϕ2)ei(h1+h2)(2π)4δ4 (q− + q+ − kγ − n1k1 − n2k2) (10)

with the prefactor S0 = −iem
√
π/(2V 3Ep+Ep−ωγ) and abbreviations hj = h+j + h−j , h±j =

x±j sin(ϕj) + y±j sin(2ϕj) and x±j = ∓ eajp±·ej
(kjp±) for j = 1, 2. We introduce the reduced matrix

element

Mn1,n2 =
(p− − p+) · εγ

m
J̃n1 J̃n2

+ ξ1(e1 · εγ)
(
J̃n1+1 + J̃n1−1

)
J̃n2

+ ξ2(e2 · εγ)
(
J̃n2+1 + J̃n2−1

)
J̃n1 (11)

where the arguments of the generalized Bessel functions J̃nj and J̃nj±1 are uj = −(x+j + x−j )
and vj = −(y+j + y−j ). The δ-function in Eq. (10)

dn = (2π)4δ4 (q− + q+ − kγ − n1k1 − n2k2) (12)

provides energy-momentum conservation for the process and motivates us to interpret the indices
nj as numbers of photons being absorbed in order to create the pair. Note that the conservation
conditions include the dressing of the particles. From now on we abbreviate n = (n1, n2).
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The total particle creation rate R is obtained by integrating the amplitude squared over all
possible particle states, averaging over the polarization states of the gamma quantum and finally
dividing by the interaction time T , leading to

R =
1

2

∑
λγ

∫
V d3p+
(2π)3

∫
V d3p−
(2π)3

|S|2
T

. (13)

In order to obtain the square of the amplitude, we introduce primed indices n′
1, n

′
2 and note that

the product dndn′ only allows contributions if

(n1 − n′
1)ω1 = (n′

2 − n2)ω2 (14)

such that we are left with

|S|2 = |S0|2TV
∑

n1,n2,n′1,n
′
2:

(14)

MnM
∗
n′dne

i[(n1−n′1)ϕ1+(n2−n′2)ϕ2]

(15)

where the factors TV stem from the square of the δ-functions.
We see that for incommensurate frequencies, condition (14) can never be fulfilled, such that

no interference terms appear and only ordinary terms with nj = n′
j contribute. On the other

hand, for frequencies that are in a commensurate ratio, interference terms can be expected.
Their contribution to the total process is modulated by the phase factor ei[(n1−n′1)ϕ1+(n2−n′2)ϕ2].
The sum over all possible photon number combinations includes the term (n1, n2, n

′
1, n

′
2) as well

as the related term (n′
1, n

′
2, n1, n2), where nj and n′

j have been interchanged. Since the product
of the reduced matrix elements is insensitive to this exchange, it is sufficient to regard in the
following the sum of these two terms, which is modulated by 2 cos[(n1 − n′

1)ϕ1 + (n2 − n′
2)ϕ2].

The distinction between primed and unprimed photon numbers is a purely mathematical effect,
which cannot be seen in the experiment. Additionally we remark that for a term with nj 	= n′

j ,
the numbers nj are lacking a straightforward interpretation.

3. Interference Effects
In this section, we investigate interference effects which occur in a setup of two co-propagating
lasers with a frequency ratio of 2. The intensities are chosen small (ξj � 1), such that the
process can be regarded perturbatively. This means, by Taylor expanding the generalized Bessel
function, we see that the term with photon numbers (n′

1, n
′
2, n1, n2) scales as

R(n′1,n
′
2,n1,n2) ∼ ξ

|n1|+|n′1|
1 ξ

|n2|+|n′2|
2 . (16)

Therefore only terms featuring the smallest possible non-negative photon numbers and fulfilling
the condition (14) contribute significantly. Additionally, we choose the intensities of the two
modes such that the total particle count rates obtained for each mode alone are of the same
order. This way, we keep the two modes in balance in order to maximize the visibility of
interference effects.

Due to the small intensities applied here, the dressing of the particles may be neglected.
Assuming the second mode to have the larger frequency, we fix the ratio of the frequencies
ν = ω2/ω1. Calculating the total particle count rate for each mode alone, we see that the
condition of balanced contributions leads to

ξ2 ∼ ξν1 , (17)
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such that Eq. (16) reads

R(n′1,n
′
2,n1,n2) ∼ ξ2N1 (18)

for non-negative photon numbers. We have introduced the number N = n1 + νn2 and we see
that n′

1 + νn′
2 = N in accordance with condition (14).

We carry out the calculations in the center of mass system, which implies

n1ω1 + n2ω2 = Nω1 = ωγ (19)

and

n1ω1 + n2ω2 + ωγ = 2Nω1 = Ep+ + Ep− (20)

We see that processes with constant ν and N are of the same order and share a common center
of mass system. The number N is related to the minimal photon numbers required: We would
need either nmin

1 = N photons from the first or nmin
2 = N/ν photons from the second mode in

order to create the pair if the lasers were operated separately.
In order to measure the frequencies, we use the relativistic β parameter of the particles in

their c.m. frame, and from Eq. (20) we obtain

γ =
1√

1− β2
=

Nω1

m
(21)

In the following, we investigate the angular distributions of the positrons, i.e. dR
dθdφ , with

usual spherical coordinates θ and φ which describe the emission direction of the positron. Since
we are working in the center of mass system, the electron is emitted in the opposite direction.
The polar angle θ is measured with respect to the propagation direction of the lasers, while the
azimuthal angle φ is measured in the polarization plane with φ = 0 (π/2) being the polarization
axis of the first (second) mode. We carry out our calculations analytically and present our
results without a common prefactor αm

16π ξ
2N
1 . The amplitude of the second laser is always chosen

as ξ2 = 0.78ξ21 , ensuring balanced contributions for both of the following cases.

3.1. Case I
In the first case, we choose the frequencies of our lasers such that either two photons from the
first or one photon from the second mode are sufficient to create the pair, such that ν = 2 = N .
In addition to the ordinary processes with photon numbers (2, 2; 0, 0) and (0, 0; 1, 1), we have an
interference term with (2, 0; 0, 1). Figure 1 shows the angular distributions for different values
of the frequencies (left to right) and for different values of the phase shift δ1 (top to bottom),
while δ2 = 0. The vertical axis shows the angle θ, while φ is depicted on the horizontal axis.
The frequencies of the lasers are subject to upper limits at which even less photons would be
sufficient to create the pair. For a fixed number N , this threshold is related to a maximum beta
parameter

βN =
1√
N

. (22)

As the figures reveal, the emission happens mostly in the plane of polarization. The distribution
is generally asymmetric about φ, but for certain values of the phase shift δ1 = π/4, it becomes
symmetric. The asymmetry is caused by the interference contribution, which vanishes identically
at this point. We see that the angular distribution strongly depends on the frequencies of
the lasers; for higher frequencies, the regions of highest emission probability become more
pronounced.
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Figure 1. Differential rates dR
dφdθ for β

β2
= 0.1, 0.5 and 0.9, corresponding to a center-of-mass

energy of Ecm = 2.01m, 2.14m and 2.59m (left to right), and δ1 = 0, π8 and π
4 (top to bottom).

3.2. Case II
In the second case, we strongly reduce the frequencies of the lasers with respect to the first case,
such that four photons from the first mode or two photons from the second mode are required,
leading to N = 4 while keeping ν = 2. The increase in N allows for more terms to contribute.
In addition to the ordinary processes (4, 4; 0, 0) and (0, 0; 2, 2), we have a mixed term (2, 2; 1, 1),
which does not depend on the phase shifts. Furthermore, we have three interference terms with
photon numbers (4, 2; 0, 1), (2, 0; 1, 2) and (4, 0; 0, 2). As Fig. 2 shows, the angular distributions
of the total process generally exhibit the same properties as in the first case, but they possess a
richer structure. The interference contributions have a strong impact, allowing for example for
β = 0.5β4 to force the positrons to be emitted predominantly either in parallel or anti-parallel
to the polarization vector of the second laser.

3.3. Total Rates
Now we investigate the total particle count rates. For case I (which is not presented here), we
have found a dependence on the frequency, but not on the phase shift. This is caused by the
fact that the interference term vanishes after integration over the azimuthal angle.

The second case is examined in Fig. 3. The first panel shows that the ordinary processes
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Figure 2. Differential rates dR
dφdθ for β

β4
= 0.1, 0.5 and 0.9, corresponding to Ecm =

2.003m, 2.07m and 2.24m (left to right), and δ1 = 0, π8 and π
4 (top to bottom).

are dominated by the mixed contribution, which does not depend on the phase shift. When we
consider the interference contributions, only the term with photon numbers (4, 0; 0, 2) does not
vanish after φ-integration, and finally contributes to the total rate. The central panel shows its
dependence on the frequencies and on the phase shift, where the latter is given by the phase
factor cos(4δ1). Finally the third panel shows the total rate as a function of the frequencies and
for various phase shifts, which can be seen to have a significant influence.

To conclude this section, we note that by inspection of the Taylor series of the generalized
Bessel functions, a necessary condition for non-vanishing interference contributions to the total
rate can be derived. By noting that

∫ 2π

0
cosk(φ) sinl(φ)dφ 	= 0 (23)

if and only if both integers k and l are even, we arrive at the conclusion that only terms where
both sums nj + n′

j are even can contribute to the total rate. This criterion was not fulfilled
for the interference term in case I, whereas in case II, the term with photon numbers (4, 0; 0, 2)
introduced the possibility of manipulating the total particle count rate by changing the phase
shift.
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Figure 3. Total rates in units of αm
16π ξ

8
1 for case II in dependence of β.

Left: Partial contributions. Center: Phase-dependence of the interference-contribution
(4, 0; 0, 2). The phase shift is increased in steps of π/16 starting at δ1 = 0 (red solid curve)
up to δ1 = π/4 (cyan dash-dotted curve). Right: Total rate for different phase shifts.

4. Dynamical Assistance
The classical Schwinger effect can be regarded as a tunneling transition of an electron from the
negative to the positive continuum, transversing a tunneling barrier of height ∼ 2m and width
∼ 2m/eE, where E is the field strength of the (static) electric field. Since even with today’s laser
technology, the tunneling distance is much bigger than the Compton wavelength, the Schwinger
process is exponentially suppressed and escapes experimental observation. In order to lower the
tunneling barrier, the scheme of dynamical assistance proposes the addition of high-frequency
radiation to the setup [12]. Absorbing these highly energetic photons, the electron is pushed
into the energy gap and sees an effectively reduced tunneling barrier.

In the following, we will investigate this scheme by numerically evaluating our expressions
for the Breit-Wheeler pair creation process. To begin with, we look at a setup in which one
high-intensity optical laser collides with gamma radiation. To avoid numerical problems, we
evaluate the expressions in a frame of reference in which the energy of the gamma radiation
is heavily reduced to ωγ = 0.93869m, while the frequency of the optical laser is up-shifted to
ω2 = 0.07m. These parameters correspond, for instance, to ω2 = 2.4 eV and ωγ = 7.2 GeV in
the laboratory frame. The red circles in Fig. 4 show the total particle count rate as a function of
the inverse of the amplitude ξ2 of the optical laser. An exponential fit as indicated by the solid
line gives a dependence of the form R ∼ exp(−16.87/ξ2). The analytic result (2) obtained for
Dirac particles was derived under the assumption of ξ � 1, yet it is known to be approximately
valid even for ξ ≈ 1, and it gives R ∼ exp(−20.3/ξ2), which is in rather good agreement with
our numerically obtained results. In order to apply the enhancement scheme, we introduce a
second laser mode with frequency ω1 = ωγ (which is chosen such that no interferences occur) and
amplitude ξ1 = 0.004. In this combined laser field, particles can be created due to the absorption
of one photon of frequency ω1, several photons from the optical laser and the gamma quantum.
The corresponding rate is depicted by the blue crosses in Fig. 4. It is enhanced by several
orders of magnitude as compared to the case in which only optical photons (and the gamma
quantum) have been absorbed1. An exponential fit to the data yields R ∼ exp(−1.54/ξ2). The
total particle rate, as depicted by the open squares in Fig. 4, is mainly given by the channel
involving the absorption of one additional high-energy photon.

In order to gain further insight, we investigate the combined process in more detail. The
following considerations are still carried out in the frame of reference in which ωγ = ω1. Having
absorbed the assisting photon and the gamma quantum, the remaining tunneling barrier to be

1 The data in Fig. 4 is calculated for a setup in which both laser modes are present. The rate labeled by n1 = 0
is essentially the same as for the case when the assisting mode is turned off, ξ1 = 0.
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gap parameter δ. The red circles,
blue crosses and green asteriks show
the respective contribution to the rate
from the absorption of zero, one or two
assisting photons. The solid blue line
is an exponential fit.

bridged by the optical laser field is δ = 2(m− ω1). Replacing its slowly oscillating electric field
by a constant field E = E0e2, the rate of this process can be obtained by a WKB approximation
and yields R ∼ exp(−G) with the Gamow factor (see also [19])

G = 2

∫ 


0

√
2m(δ − eE0y) dy =

4
√
2

3

Ecr

E0

(
δ

m

)3/2

(24)

where we have used the remaining tunneling distance � = δ/eE0. For our setup, this calculation
yields G = −1.16/ξ2, which is in reasonable agreement with our numerical results. Finally we
remark that the pair creation rate induced by the gamma quantum and the assisting laser alone
is 4.06× 10−14m.

In order to validate our picture, we have numerically investigated the effect of a change
in the tunneling barrier. In Fig. 5 we vary the frequencies of the gamma quantum and the
assisting radiation according to ω1 = ωγ = 2m−δ

2 . The partial rates for the channel comprising
one assisting photon can be fitted to a form given by Eq. (24) and we obtain numerically
R ∼ exp(−32.3 (δ/m)3/2), while the model calculation yields a Gamow factor of 38.5 (δ/m)3/2.
The plot clearly shows the enhancement effect, and additionally we see that for bigger values
of the gap parameter the channel involving two assisting photons provides the dominating
contribution to the total rate.

23rd International Laser Physics Workshop (LPHYS’14) IOP Publishing
Journal of Physics: Conference Series 594 (2015) 012051 doi:10.1088/1742-6596/594/1/012051

9



5. Conclusion
Two different aspects of the Breit-Wheeler pair production process in bichromatic laser fields
were investigated. For low-intensity fields with commensurate frequencies, interference effects
between production channels involving different numbers of photons have been shown to affect
the angular distributions of the emitted particles and in some cases also the total particle count
rate. A necessary condition for the latter effect has been derived.

Furthermore, Schwinger-like pair production induced by the decay of a gamma quantum
traveling in a high-intensity optical laser wave was studied. Following the scheme of dynamical
assistance, the addition of high-frequency yet low-intensity laser radiation was shown to strongly
enhance the particle yield, offering good prospects for an experimental realization of Schwinger-
like pair production. For more details, the interested reader is referred to [20].
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