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Abstract. We review and elaborate the complex effective action at one-loop and at zero or
finite temperature in the in-out formalism for scalar QED and the vacuum persistence in time-
dependent electric fields. Using the gamma-function regularization, we find the effective action
in the proper-time integral and the pair-production rate in an exponentially increasing electric
field. We apply the quantum invariant theory to the scalar field in time-dependent electric
fields and clarify the meaning of multi-pair states. And pair-production rates are derived when
the initial state is the Minkowski vacuum or the adiabatic vacuum and are compared with
two representations for the Vlasov equation. Finally, the contour integral method gives the
pair-production rate in the exponentially increasing electric field.

1. Introduction
The vacuum polarization and the production of electron-positron pairs by background electric
fields is one of the most interesting nonperturbative phenomena in quantum field theory.
Heisenberg and Euler [1] and Schwinger [2] have shown that the vacuum under the action of a
constant electromagnetic field could be polarized as a medium and the effective action could gain
an imaginary part, implying the instability of the Dirac sea (Minkowski vacuum) due to the pair
production. With the rapid development of intense lasers, probing the vacuum structure may
be attainable by such a facility as Extreme Light Infrastructure (ELI) or International Center
for Zetta-Exawatt Science and Technology (IZEST) in the near future.1

The coherent state of numerous low energy photons from intense lasers provides an
electromagnetic field, which is spatially localized and temporally pulsed. However, computing
the one-loop effective action for the localized pulse has been a theoretical challenge in quantum
field theory in strong field physics (for a good review and references, see [3]). Further, electron-
positron pairs can be produced in a localized, time-dependent electric field. The vacuum
instability implies the one-loop effective action should be complex in electric fields. In fact, the
in-out formalism by Schwinger and DeWitt [4, 5] leads to a complex effective action, the real part
of which is the vacuum polarization and twice the imaginary part of which is the decay rate of the
vacuum and is related to the pair production rate. The methods so far introduced for calculating
the pair-production rate are the Vlasov equation [6, 7, 8], the worldline instanton [9, 10], the
phase integral [11, 12], the contour integral [13, 14], to name a few. The methods for the

1 ELI, http://www.eli-laser.eu/ and IZEST, http://www.izest.polytechnique.edu/.
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vacuum polarization are the resolvent technique [15], the Feynman worldline path integral [16],
the Dirac-Heisenberg-Wigner formalism [17], the Schwinger-DeWitt in-out formalism [18, 19].
There are other useful methods either for the vacuum persistence or for the vacuum polarization,
which are not listed here [3].

In this paper, we review and elaborate a recent field theoretic method for the complex
effective action and the quantum invariant method for quantum states for a charged field in
time-dependent electric fields. In the in-out formalism, the one-loop action integrated over
the four-volume is the scattering matrix eiW = ⟨0, out|0, in⟩ between the out-vacuum and the
in-vacuum. Further, the scattering matrix can be expressed by the Bogoliubov coefficients
between two vacua in the electromagnetic field background. As quantum field theory, some
renormalization scheme should be taken to regularize the UV divergences by renormalizing the
vacuum energy and the charge. With the renormalization taken for granted, the task for the
one-loop effective action is to find the Bogoliubov transformation between the in-vacuum and the
out-vacuum. This implies that the one-loop effective action becomes complex when an electric
field present regardless of the presence of a magnetic field. In other words, the complex effective
action consists of the vacuum polarization and the vacuum persistence

LC
eff = Lvac pol +

i

2
Lvac per. (1)

As will be shown in section 2, the vacuum persistence in the electric field is related to the
pair-production rate Nk for each momentum

Lvac per = 2 ImLC
eff =

∑
k

ln(1 +Nk). (2)

We then apply the quantum invariant theory by Lewis and Riesenfeld [20] to the time-
dependent Hamiltonian for a charged spinless scalar in time-dependent electric fields. The
Hamiltonian is equivalent to an infinite sum of time-dependent oscillators in homogeneous,
time-dependent electric fields and to coupled oscillators in the time-dependent magnetic fields
with a fixed direction [21]. The time-dependent annihilation and creation operators, quantum
invariant operators, construct not only the time-dependent vacuum but also excited states of
multi-pairs and a thermal state. Electron-positron pairs are spontaneously produced from the
vacuum and there can be stimulated production of pairs from some pairs or a thermal ensemble
of pairs present in the remote past.

2. Review of In-Out Formalism for Scalar QED Action
In this section we review the complex QED action in time-dependent electric fields the in-out
formalism. For the sake of simplicity, we consider a charged spinless scalar in a homogeneous,
time-dependent electromagnetic field with the vector potential

A(t) = −
∫ t

E(t′)dt′. (3)

Due to the translational symmetry, the Klein-Gordon equation after the momentum-
decomposition becomes a second order equation (in units of h̄ = c = 1)

ϕk(t) + ω2
k(t)ϕk(t) = 0 (4)

with a time-dependent frequency squared

ω2
k(t) = (k− qA(t))2 +m2. (5)
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By connecting the positive and the negative frequency solutions to eq. (4) satisfying appropriate
boundary conditions in the remote future and the remote past, we find the Bogoliubov
transformation between the particle and antiparticle annihilation operators âk,out, b̂k,out in the

out-vacuum and those âk,in, b̂k,in in the in-vacuum:

âk,out = αkâk,in + β∗
kb̂

†
k,in = Ûkâk,inÛ

†
k,

b̂k,out = αkb̂k,in + β∗
kâ

†
k,in = ÛkB̂k,inÛ

†
k. (6)

Here, the evolution operator can be expressed in terms of a two-mode squeezing operator and a
phase operator [18]

Ûk = exp
[
rk(âk,inb̂k,ine

−2iϑk −H.C.)
]
exp

[
iθk(â

†
k,inâk,in + b̂k,inb̂

†
k,in)

]
, (7)

where the squeeze parameter rk and angles θk, ϑk are given by

αk = e−iθk cosh rk, βk = −eiθk(e−2iϑk sinh rk). (8)

These operators satisfy the commutation relations

[âk,in, â
†
p,in] = [b̂k,in, b̂

†
p,in] = δ(k− p), (9)

and a similar expression holds for âk,out, b̂k,out but all the other commutators vanish. The out-
vacuum as the squeeze vacuum

|0, out⟩ =
∏
k

eiθk exp
[
rk(âk,inb̂k,ine

−2iϑk −H.C.)
]
|0, in⟩, (10)

is equivalent to the summation of all one-loop diagrams with even number of external legs.
Then, the out-vacuum is the multi-pair states of the in-vacuum

|0, out⟩ =
∏
k

eiθksechrk
[ ∞∑
nk=0

ei2nkϑk tanhnk(rk)|nk, n̄k, in⟩
]
. (11)

The complex one-loop effective action at the zero temperature (T = 0) integrated over three-
volume V and time is given by [18, 19]

W = −i ln⟨0, out|0, in⟩ = iV
∑
k

α∗
k, (12)

with
∑

k =
∫
d3k/(2π)3, and the action at finite temperature T is given by [22]

eWT =
Tr
(∏

k Û
†
kρ̂k

)
Tr
(∏

k ρ̂k
) . (13)

Here, ρ̂k denotes the density operator for an initial thermal ensemble of pairs with the energy
ωk present in the background field. In a similar way, we may find from eq. (13) the effective
action stimulated by the initial pairs in the state ρ̂k = |nk, n̄k, in⟩⟨nk, n̄k, in|, which is the QED
analog of stimulated emission of photons. Then, the effective action at T per unit volume has
the expression [22]

LC
eff(T ) = −i

∑
k

[
ln(1 + e−(ωk−zk)/kT )− zk

kT
− ln(1 + e−ωk/kT )

]
, (14)
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where zk is the chemical potential

zk = kT (iθk − ln cosh rk). (15)

The action (14) has the following interpretation: the first term is the effective action with the
complex chemical potential zk, the second term is the zero-temperature action and the last term
is the free energy for the initial ensemble. In the zero-temperature limit, eq. (14) reduces to
the vacuum effective action. Remarkably, the vacuum persistence is expressed by the initial
Bose-Einstein distribution nBE and the complex chemical potential as [22]

2ImLC
eff(T ) = −

∑
k

∞∑
l=0

(nBE)
l

l
[(ezk/kT − 1)l + (ez

∗
k/kT − 1)l]. (16)

3. Complex QED Action in a Time-dependent Electric Field
We now illustrate the in-out formalism by working out the scalar QED in a time-dependent
electric field along the z-direction

Ez(t) = E0e
t
τ , Az(t) = −E0τ(e

t
τ − 1). (17)

The positive frequency solution to eq. (4) in the remote future is given by the Whittaker function

ϕ
(+)
k (t) = e−iπλ/2

√
τ

ξ
Wλ,−µ(ξ), (18)

where

ξ = 2iqE0τ
2e

t
τ , µ = iτ ω̄k, λ = −iτ k̄z, (19)

with

k̄z = kz − qE0τ, ω̄k =
√
m2 + k2

⊥ + k̄2z . (20)

One may be tempted to expect a catastrophic pair production since the model electric field (17)
increases beyond the critical field when t ≥ τ ln(m2/qE0). In quantum field theory, however,
the out-vacuum is defined as an asymptotic state with respect to the solution (18) in the remote
future. And the solution (18) can be linearly superposed as the positive and the negative
frequency solutions in the remote past, corresponding to the Minkowski vacuum. Then, the
Bogoliubov coefficients are

αk =

√
2ω̄kτeπτω̄k

eπk̄z

Γ(2µ)

Γ(12 + µ− λ)
,

βk =

√
2ω̄kτ

eπτω̄keπk̄z

Γ(−2µ)

Γ(12 − µ− λ)
. (21)

The pair-production rate is given by

Nk = |βk|2 =
e−2πτω̄k + e−2πτk̄z

e2πτω̄k − e−2πτω̄k
. (22)

We find the complex effective action (12) from the in-out formalism

LC
eff = i

∑
k

[Γ(2µ∗)− Γ(
1

2
+ µ∗ − λ∗)− · · ·], (23)
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Figure 1. One of the contour integrals in the complex plane of proper time for the gamma
function regularization [23].

where dots denote terms to be regulated away through renormalization. Following refs. [18, 19],
the complex action can be written as the proper-time integral

LC
eff = i

∑
k

∫ ∞

0

ds

s

[ e2iτ ω̄ks

1− e−s
− eiτ(ω̄k+k̄z)s

e
s
2 − e−

s
2

− 1 +
2

s

]
, (24)

where the Schwinger subtraction scheme is employed to renormalize the vacuum energy and the
charge. The Cauchy theorem for the contour in figure 1 leads to the complex effective action

LC
eff =

1

2

∑
k

∫ ∞

0

ds

s

[e−2τω̄ks

cos( s2)
− e−τ(ω̄k+k̄z)s

sin( s2)
− 1 +

2

s

]
+

i

2
ln(1 +Nk). (25)

The imaginary part comes from the residues at simple poles (2iπn) along the imaginary axis
and thus satisfies the consistency condition from the in-out formalism. It is interesting that the
first proper-time integral has the form for spinor QED while the second integral has the form
for scalar QED [2]. Using the Bogoliubov coefficients (21), we may find the complex effective
action (14) at finite temperature, which will not be pursued here.

4. Quantum Invariant Theory for Schrödinger Equation
In the time-dependent electric field (3), the charged field has the time-dependent Hamiltonian
[21]

H(t) :=
∑
k

Hk(t) =
∑
k

[π∗
kπk + ω2

k(t)ϕ
∗
kϕk], (26)

where πk = ϕ̇∗
k, π

∗
k = ϕ̇k. In the Schrödinger picture, quantum states may be found from the

time-dependent functional Schrödinger equation

i
∂

∂t
Ψ(t, ϕ, ϕ∗) = Ĥ(t)Ψ(t, ϕ, ϕ∗). (27)

The main advantage of the Schrödinger picture is the diversity of quantum states as in quantum
mechanics and quantum optics. We further employ the quantum invariant theory for time-
dependent oscillators by Lewis and Riesenfeld, which solves the Liouville-von Neumann equation
for the density operator [20]

i
∂ρ̂k(t)

∂t
+ [ρ̂k(t), Ĥk(t)] = 0. (28)
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The eigenstate of the invariant (28) is an exact solution to eq. (27) up to a time-dependent
phase factor [20]. We adopt a pair of invariant operators that play the role of time-dependent
annihilation and creation operators [21, 24, 25]

Âk(t) =
i√
2

(
φ∗
k(π̂

†
k + π̂k)− φ̇∗

k(ϕ̂
†
k + ϕ̂k)

)
=

1√
2
(âk(t) + b̂k(t)),

Â†
k(t) = − i√

2

(
φk(π̂

†
k + π̂k)− φ̇k(ϕ̂

†
k + ϕ̂k)

)
=

1√
2
(â†k(t) + b̂†k(t)). (29)

Here, âk(t) and b̂k(t) are the annihilation operators for particle and antiparticle, respectively,
and φα is a complex solution to the mode equation (4) and satisfies the Wronskian condition

φk(t)φ̇
∗
k(t)− φ∗

k(t)φ̇k(t) = i. (30)

Then, the time-dependent annihilation and creation operators satisfy the equal-time commutator

[Âk(t), Â
†
p(t)] = δ(k− p). (31)

Note that âk(t) and b̂k(t) are not independently invariants and become an invariant as the pair.
The fields are given by

ϕ̂(t,x) =
∑
k

[φk(t)âk(t)e
ik·x + φ∗

k(t)b̂
†
k(t)e

−ik·x],

π̂(t,x) =
∑
k

[φ̇k(t)âk(t)e
ik·x + φ̇∗

k(t)b̂
†
k(t)e

−ik·x]. (32)

Note that the antiparticle carries the opposite momentum of the particle.
Using eq. (29), we can construct coherent states, squeezed states as well as multi-pair states

[26, 27, 28]. The quantum invariant theory has been used to derive the nonadiabatic quantum
Vlasov equation [8, 29]. The time-dependent vacuum is the product of all zero-particle states

|0, t⟩ =
∏
k

|0k, t⟩, Âk(t)|0k, t⟩ = 0. (33)

The fields (32) have the equal-time correlation functions

⟨0, t|ϕ̂†(t,y)ϕ̂(t,x)|0, t⟩ =
∑
k

|φk(t)|2eik·(x−y),

⟨0, t|π̂†(t,y)π̂(t,x)|0, t⟩ =
∑
k

|φ̇k(t)|2eik·(x−y). (34)

The correlation functions (34) may be used to find the energy-momentum tensor and even the

effective action, which requires independent works. For the fixed k, acting Â†
k(t) n-times on the

vacuum excites the n-pair state [21]

|nk, t⟩ =
(Â†

k(t))
nk

√
nk!

|0, t⟩ = 1√
2nknk!

nk∑
lk=0

(
nk

lk

)
|nk − lk, l̄k, t⟩, (35)

where the time-dependent particle-antiparticle states are defined as

|kk, l̄p, t⟩ =
(â†k(t))

kk
√
kk!

(b̂†p(t))lp√
lp!

|0k, 0̄p, t⟩. (36)
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The multiparticle states are orthonormal to each other. The n-pair state is completely symmetric
with respect to the particle and antiparticle numbers and is an entangled state. The number of
particles or antiparticles is

⟨nk, t|â†k(t)âk(t)|nk, t⟩ = ⟨nk, t|b̂†k(t)b̂k(t)|nk, t⟩ =
nk

2
. (37)

In fact, the n-pair state (35) contains the total number nk of particles and antiparticles. The
thermal state may be given by

ρ̂k(t) =
1

Zk
e−2

ωki
kT

Â†
k
(t)Âk(t). (38)

Here, Zk = Tre−2(ωki/kT )Â†
k
(t)Âk(t) is the partition function and ωki is the initial energy for

particle and antiparticle. The factor of two makes the density operator practically equivalent

to a product of e−(ωki/kT )â†
k
(t)âk(t) and e−(ωki/kT )b̂†

k
(t)b̂k(t). The thermal density (38) is also a

quantum invariant and may be used to calculate the effective action at T in section 2.

5. Spontaneous and Induced Pair Production
In the quantum invariant theory for time-dependent systems, using the time-dependent
annihilation and creation operators (29), we can construct various exact quantum states from
time-dependent number states to the squeezed number state [27] and even to the thermal
squeezed-coherent state [28]. The time-dependent vacuum (33) is an exact state for eq. (27).
In the limit of A = 0 in the remote past (t0 = −∞), the vacuum (33) becomes the Minkowski
vacuum. Further, the invariant operators (29) define the number operator with the given
momentum k

N̂k(t) = Â†
k(t)Âk(t). (39)

Now, we may ask a question how many pairs of Minkowski particle and antiparticle are contained
in the vacuum (33)

Nk(t) = ⟨0, t|Â†
k(t0)Âk(t0)|0, t⟩, (40)

or how many pairs defined by the number operator (39) are contained in the Minwkowski vacuum

Nk(t) = ⟨0, t0|Â†
k(t)Âk(t)|0, t0⟩. (41)

The rate of spontaneous production of pairs (40) and (41) by the electric field is given by the
same formula [21]

Nk(t) = |φ̇k(t)|2|φk(t0)|2 + |φk(t)|2|φ̇k(t0)|2 −
1

2
. (42)

It is symmetric with respect to the exchange of times, t and t0. The production of pairs induced
from pairs already present in the remote past is now given by

Nk(t) = ⟨nk, t0|Â†
k(t)Âk(t)|nk, t0⟩ = (|φ̇k(t)|2|φk(t0)|2 + |φk(t)|2|φ̇k(t0)|2)(nk + 1)− 1

2
. (43)

We may use the Hamiltonian expectation value to count the number of quanta with the given
energy. The Hamiltonian expressed in terms of particle and antiparticle operators

Ĥk(t) = (|φ̇k(t)|2 + ω2
k(t)|φk(t)|2)(â†k(t)âk(t) + b̂k(t)b̂

†
k(t))

+(φ̇2
k(t) + ω2

k(t)φ
2
k(t))âk(t)b̂k(t) + (φ̇∗2

k (t) + ω2
k(t)φ

∗2
k (t))â†k(t)b̂

†
k(t). (44)
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has the expectation value at the equal time

⟨nk, t|Ĥk(t)|nk, t⟩ = (|φ̇k(t)|2 + ω2
k(t)|φk(t)|2)(2nk + 1). (45)

In the zero-field limit E(±∞) = 0, the asymptotic solutions

φin
k (t) =

e−iωkit

√
2ωki

, φout
k (t) =

e−ikot

√
2ωko

, (46)

lead to the in-vacuum and the out-vacuum

Ĥki|nk, in⟩ = ωki

(
nk +

1

2

)
|nk, in⟩,

Ĥko|nk, out⟩ = ωko

(
nk +

1

2

)
|nk, out⟩. (47)

Now, we use eq. (42) to compare with the pair-production rate in the in-in formalism and
the in-out formalism [29]. Substituting eq. (46) into eq. (42), we find the pair-production rates

N in
k (t) =

|φ̇k(t)|2 + ω2
ki|φk(t)|2

2ωki
− 1

2
, (48)

and

N out
k (t) =

|φ̇k(t)|2 + ω2
ko|φk(t)|2

2ωko
− 1

2
. (49)

On the other hand, the adiabatic solution

φad
k (t) =

e−i
∫ t

ωk(t
′)dt′√

2ωk(t)
(50)

leads to another pair-production rate

N ad
k (t) =

|φ̇k(t)|2 + ω2
k(t)|φk(t)|2

2ωk(t)
− 1

2
. (51)

The pair-production rate (48) is the same as eq. (22) in the in-in Vlasov equation and eq. (51)
is the same as eq. (12) in the in-out Vlasov equation of ref. [29]. Note that eq. (51) may be
obtained by

N ad
k =

1

2ωk(t)
⟨0k, t|Ĥk(t)|0k, t⟩ −

1

2
. (52)

The pair production (52) is the mean energy divided by the instantaneous energy, which counts
the number of quanta with the energy ωk.

6. Pair Production Via Polons
Various approximation methods have been developed to calculate the pair-production rate. The
contour integral method evolves the Hamiltonian in the complex plane of time or space when the
gauge potential (3) has an analytical continuation. Then, the magnitude of the in-in scattering
matrix approximately gives the pair-production rate [14]

Nk =
∣∣∣∑
J

exp
[
−i

∮
C

(1)
J

ωk(ζ)dζ
]∣∣∣, (53)
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where ωk(ζ) is the frequency in the complex plane and C
(1)
J runs over all the possible contours

of winding number one around simple poles, finite and infinite. Hence the pair production is
entirely determined by simple poles, which may be dubbed “polons.”

We consider a constant electric field with the vector potential A∥(z) = −qE0z in the complex
plane of time. Then, the frequency for the spinless charge

ωk(ζ) =
√
m2 + k2

⊥ + (k∥ + qE0z)2 (54)

does not have any finite simple pole but has a simple pole at the infinity. Under a conformal
transformation z = 1/ζ, the contour integral gives the Schwinger formula [13]

e
iqE0

∮
dζ

ζ3

√
(1−z0ζ)(1−z∗0ζ) = e

−
π(m2+k2⊥)

qE0 , (55)

where z0 = (k∥ − i
√
m2 + k2

⊥)/(qE0) and the Cauchy theorem is applied to the contour integral

after the square root is expanded. Next, we consider the electric field and vector potential (17),
which has the complex frequency in the complex plane

ωk(z) =
√
m2 + k2

⊥ + (k̄∥ + qE0e
z
t )2. (56)

Under another conformal transformation ζ = ez/τ , the pair-production rate is given by

e
−iqE0

∮
dζ
ζ

√
(ζ−z0)(ζ−z∗0 ) = e−2πτ(ω̄0+k̄∥), (57)

where the contour integral of winding number one is taken around the simple poles at z = 0
and z = ∞. The contour integral of winding number two around the simple pole at z = 0 yields
e−4πτω̄0 . These two contour integrals are exclusive and thus sum to the numerator of eq. (22).
It is remarkable that the exact pair-production rate

Nk = (e−(2πτω̄0)(2) + e−2πτ(k̄∥+ω̄0))
∞∑
l=0

e−(2πτω̄0)(2l) (58)

may be obtained by summing the possible contour integrals of all winding numbers.

7. Conclusion
We have reviewed and elaborated the QED effective action in the in-out formalism and the
quantum invariant theory for the Schrödinger equation for a charged spinless scalar in time-
dependent electric fields. We have also applied the contour integral method to the pair-
production rate. In the in-out formalism by Schwinger and DeWitt [4, 5], the one-loop effective
action is expressed by the Bogoliubov coefficients, which relate the out-vacuum to the in-vacuum.
Many configurations of electric fields have the Bogoliubov coefficients in terms of the gamma
functions and the gamma-function regularization leads the QED action in the proper-time
integral in the constant and the Sauter-type electric fields [18, 19].

In this paper we have extended the QED action to an exponentially increasing electric field.
The QED action is complex, whose real part is the vacuum polarization and whose imaginary
part is related to the pair-production rate. We have also applied the quantum invariant theory to
the time-dependent Hamiltonian for the charged spinless field in time-dependent electric fields.
The time-dependent annihilation and creation operators construct various quantum states such
as number states of pairs and a thermal state. The connection of two representations of the
Vlasov equation with the formulae for pair production is also clarified. The quantum invariant
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theory can be applied to the Hamiltonian in the momentum space for a localized pulse of lasers.
Finally, we have explained the contour integral method to calculate the pair production in the
constant electric field and further elaborated the method to the exponentially increasing electric
field. These recent methods seem to be not only convenient but also powerful in explicitly
obtaining the QED actions and pair-production rates in intense lasers, which wait for extensive
investigation.
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