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Abstract. The linear-response theory of the multiconfigurational time-dependent Hartree for
bosons method (LR-MCTDHB) for computing many-body excitations of trapped Bose-Einstein
condensates [Phys. Rev. A 88, 023606 (2013); J. Chem. Phys. 140, 034108 (2014)] is
implemented, for the first time, for systems with general interparticle interaction. This allows
us to investigate the many-body excitation spectrum of interacting bosons with, for instance,
a long-range interaction. Illustrative numerical examples for repulsive and attractive bosons
are provided. The LR-MCTDHB theory is capable of identifying all excitations, including
the excitations which are not unraveled within Bogoliubov—de Gennes equations. The theory
is herewith benchmarked against the exactly-solvable one-dimensional harmonic-interaction
model. As a complementary result, using a complex transformation, we represent LR-MCTDHB
in a compact block-diagonal form, opening up thereby an avenue for treating larger many-body
systems. We expect the LR-MCTDHB theory and its implementation for general interparticle
interaction to provide a proved probe into the many-body excitations involved in the out-of-
equilibrium dynamics of trapped interacting bosons.

1. Introduction

The standard and most popular avenue to compute the dynamics (and excitations) of a Bose-
Einstein condensate (BEC) is the Gross-Pitaevskii equation, which assumes all bosons to occupy
a single one-particle state [1-4]. Clearly, whenever the system under investigation is not fully
condensed one has to go beyond Gross-Pitaevskii theory in order to faithfully account for the
system’s dynamics, a matter which is well documented in the literature, see, e.g., the recent
book [5] and references therein.

The usual way to account for excitations in a BEC is to build them atop the Gross-Pitaevskii
ground state, taking a particle out from the condensate to an excited one-particle state. Formally,
this leads to the Bogoliubov—de Gennes equations which often are also referred to as linear
response of the Gross-Pitaevskii equation [1-10]. It turns out, as we have recently shown for
contact interaction [11], that even if the ground state is well described by the fully-condensed
Gross-Pitaevskii wavefunction, many excitations are missing by this standard treatment. For
fully-fragmented ground states [12], more excitations appear [13]. Thus, to describe systems
whose ground states are not fully condensed and, importantly, to identify new classes of
excitations which cannot be resolved by the standard tools, suitable methods are in need.

Consider N trapped bosons, interacting by a generic interparticle interaction. The many-
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particle Hamiltonian is written as follows

N
H(ry,...,r5) =Y h(x)+ Y W(rj,rp). (1)

j=1 k>j=1

Here h(r) is the one-body Hamiltonian which consists of kinetic and potential (trap) terms
and W(r, r’) is a generic interparticle interaction which is symmetric to permutation of the
particles’ coordinates. In the familiar case for ultracold bosonic atoms it takes the form
W(r, r’) = A\gd(r—r’) where the interaction parameter ) is proportional to the s-wave scattering
length.
We recall that by approximating the system’s time-dependent wavefunction by the product
state
\I/(;p(rl, e ,I‘N;t) = qb(rl,t) ey, t) = ‘N;t) (2)

and utilizing the Dirac-Frenkel variational principle, the Gross-Pitaevskii equation, ié(r,t) =
[h(x) + A o(r,t)|2]p(r, t), where A = Ag(N — 1), is obtained.

The linear-response theory atop the Gross-Pitaevskii mean-field wavefunction (2) is formally
obtained by linearizing the Gross-Pitaevskii equation around the ground-state solution. It results
in the Bogoliubov—de Gennes equations which take on the matrix form

ub\ u® ~(h2X o — ¢o)?
ﬁBdG(v’“)‘“’“(v’“)’ ﬁBdG‘( A(65)? —<iz*+2xw¢02—u>>' ®)

The linear-response matrix Lpgg depends explicitly on the ground-state orbital ¢g. p is the
chemical potential. The excitation spectrum wy of the BEC as well as the so-called response
amplitudes u* and v* are obtained by solving the eigenvalue system (3).

2. Many-body theory

In many situations as mentioned above the ground state of the BEC cannot be described well by
the wavefunction Eq. (2). Importantly, even when the ground state is well approximated by the
Gross-Pitaevskii wavefunction (2), the standard linear-response atop misses many excitations
[11], also see the benchmarks in Sec. 3 below. The natural idea was to use a more extended
ansatz for the system’s wavefunction, and then to perform linear response atop [11, 14]. We recall
that linear response atop the exact ground state gives rise to the exact many-body excitation
spectrum, see, e.g., [15, 16].

Let us briefly describe the underlying many-body theory for BECs used in the present work
before we proceed to its linear response. In the multiconfigurational time-dependent Hartree for
bosons (MCTDHB) method [17, 18] the bosons are allowed to occupy not one but j =1,..., M
one-particle functions (modes) ¢;. The many-body wavefunction is assembled by distributing
the N bosons over the M one-particle functions

U(t) = Z: Cr(t)]7i; 1), (4)

where Cj(t) are the expansion coefficients and |7;¢) are permanents (Fock states) with 7 =
(n1,...,nar), n1 + ...+ ny = N. Utilizing the Dirac-Frenkel variational principle, the one-
particle functions ¢; as well as the expansion coefficients Cj; are determined self-consistently.
This leads to a system of coupled equations which has been coined in the literature the MCTDHB
method [17, 18]. The MCTDHB method has been used for unveiling many-body phenomena with
repulsive and attractive BECs in one-dimensional setups, see, e.g., [19-26], and benchmarked
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against an exactly-solvable model [27]. Most recentlyy, MCTDHB was extended to two and
three spatial dimensions, and employed to establish the mechanism of fragmentation and generic
regimes of dynamics in repulsive BECs with strong, finite-range interparticle interactions [28, 29].

The successes of the MCTDHB method to accurately compute many-body out-of-
equilibrium dynamics of BECs stem from the employment of the self-consistent (time-adaptive)
multiconfigurational wavefunction (4). The wavefunction (4) contains a substantially larger
number of variational parameters (i.e., modes, and Fock states and their expansion coefficients)
in comparison with the standard Gross-Pitaevskii wavefunction (2). Clearly, if the obtained
many-body dynamics is accurate then MCTDHB manages to resolve the excitation spectra of
BECs. This has motivated us to pursue its linear response, as a venue to research on the
many-body level excitations of trapped BECs directly, i.e., without propagation.

The derivation of the linear-response (LR) theory atop the wavefunction (4) is rather lengthly
but otherwise straightforward [11, 14]. We will not repeat it here and begin from the final result
for the resulting LR-MCTDHB theory, which takes on the form of the eigenvalue equation
[11, 14]

uk uk
Vk Vk

c Ck = Wg Ck . (5)
ch ch

The linear-response matrix £ of the many-boson wavefunction ¥ is more involved than
the Bogoliubov—de Gennes linear-response matrix (3). We will discuss its structure shortly.
Physically, the response amplitudes of all modes, u® and v¥, and of all expansion coefficients,
Ck and CF, combine to give the many-body excitation spectrum wy. For comparison, in the
Bogoliubov—de Gennes linear-response matrix (3) there is only a single block representing the sole
one-particle function used to describe the BEC within Gross-Pitaevskii theory. In Ref. [11] we
have successfully managed to explicitly construct £ for bosons interacting by contact potential
and obtained the many-body excitation spectrum.

There is another way to group the linear-response matrix which we are now going to exploit.
Namely, first to list the orbitals’ and coefficients’ ‘u’ blocks and then the respective ‘v’ blocks.
In this way each of the new blocks has the same dimension, see below. The spectrum, of course,
does not change. Hence, reshuffling the blocks of £ the final result can be written as

uk uk
ct c* ( | o )

L - =w L ) L= U\ * %3 ) 6
vt [ Y [~ (6)
C C

v v

where details of the blocks of L are collected in [30].
The above general relation between the ‘u” and ‘v’ blocks of L is appealing since we may mix
them and eventually block diagonalize £. For this, consider the transformation

1 1 10
where 6 is the operation of complex conjugation, for example, fv* = (vF)*. It is not difficult to

show that Q block diagonalizes £; Consult the appendix for additional details. The final result
reads

fk fk u v u u
o (o) =t (cy). &P =ter e,
2 (& 2 (& 2
c? (c’;) = w} (c’;) . LY = (L4 Lmo) (L - L), (8)
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L[Ch £ (Ch]

Eq. (8) is the main result of this work on the theory side; We compactly represent the LR-
MCTDHB theory in a block-diagonal form. Because the resulting (square of the) excitation
spectrum is bound from below, this will open up an avenue for treating larger systems. First,
this in particular would allow one to use standard diagonalization techniques for matrices with
bound spectra. Here, Eq. (8) defines the basic operation of matrix-to-vector multiplication
used in such techniques. Second, it reduces the size of the linear-response matrix to half its
size. Furthermore, since Q in Eq. (7) is a complex transformation, the block diagonalization
can be used with complex wavefunctions and with complex hermitian Hamiltonians. This
situation is encountered, e.g., when a system is described in the rotating frame. Thus, the
block diagonalization derived in the present work for the many-body theory also generalizes
the literature block-diagonalization treatment of the Bogoliubov—de Gennes equations, see, e.g.,
[31-33], which only used a real transformation. This concludes our block diagonalization of the
LR-MCTDHB theory.

3. Illustrative numerical examples and benchmarks

In the following section we would like to report, for the first time, the implementation and
application of LR-MCTDHB with general interparticle interaction. As an illustrative system we
have chosen the harmonic-interaction model [34-37]. This is an analytically-solvable model, yet,
it is not at all trivial to be treated numerically. First, because the interaction is non-contact the
construction of various matrix elements for computing the ground-state wavefunction and its
response matrix are much more involved. We have now successfully coped with this demanding
task. Second, the solution of the problem on the computer is done in the laboratory frame, where
all the bosons are indistinguishable. This is unlike the analytical solution which exploits the
separability of the center-of-mass and relative coordinates’ degrees-of-freedom. As mentioned
above, the harmonic-interaction model and a time-dependent extension of which have been used
to benchmark MCTDHB [27]. Hence, we expect the model to be instrumental in benchmarking

the excitation spectrum computed by the many-body linear-response theory.
1
2
reads W (z—2a') = K (z—a')?, representing thereby long-range interaction. The parameter K < 0

(K > 0) indicates repulsion (attraction) between the bosons. In what follows we set without loss
of generality 2 = 1. The exact excitation energies of the one-dimensional harmonic-interaction
model are known and given by [34, 36]

In Eq. (1) the one-body Hamiltonian is now fb(az) = —%%—i— 0222, The two-body interaction

wnen, Nrel] = nem + Npeldn on =V1+2NK, 9)

with the center-of-mass (C'M) and relative coordinates’ (rel) quantum numbers ncy = 1,2,3, . ..
and 1.0 = 2,3,....

We consider N = 1000 weakly-interacting repulsive bosons (K = —0.0001) and compare
in Table 1 below the LR-MCTDHB results with the analytical formula (9). The many-body
theory, computed at the level of M = 2 orbitals in the expansion (4), improves as one
would expect the accuracy of excitations unveiled by Bogoliubov—de Gennes theory. More
important, it unravels additional excitations. We see the capability of the LR-MCTDHB theory
to describe numerically-exactly the center-of-mass and relative coordinates’ excitations. The
physical distinction here for the excitations missing in the Bogoliubov—de Gennes theory is that
all consist of one quantum of center-of-mass excitation plus at least one additional quantum of
excitation. The latter can be either another center-of-mass or a relative coordinates’ excitation,
see the rightmost column of Table 1. We stress again that the computation is done in the



23rd International Laser Physics Workshop (LPHYS’14)

IOP Publishing

Journal of Physics: Conference Series 594 (2015) 012039

doi:10.1088/1742-6596/594/1/012039

M=1 M=2 Exact analytical | noar, Nrer
Fgs | 447.26949371 | 447.26638194 | 447.26638190 0,0
w1 1.00000000 1.00000000 1.00000000 1,0
wo 1.78907797 1.78885443 1.78885438 0, 2
w3 n/a 2.00004476 2.00000000 2,0
Wy 2.68361696 2.68328168 2.68328157 0,3
w5 n/a 2.78888891 2.78885438 1,2
we n/a 3.00007751 3.00000000 3,0
wy 3.57815595 3.57771028 3.57770876 0, 4
ws n/a 3.68397387 3.68328157 1,3

Table 1. Spectrum of the one-dimensional harmonic-interaction model with N = 1000 bosons
and repulsion K = —0.0001. Comparisons of LR-MCTDHB and the exact results for the ground,
Eqg, and excited states, wp = Er — Egg. The last column assigns the excitations in terms of
center-of-mass and relative coordinates’ quantum numbers. Some excitations are first uncovered
at the M = 2 level of theory, i.e., they are not available (n/a) within Bogoliubov—de Gennes
theory (M = 1). Convergence with the number or orbitals M to the exact results is clearly seen.

Underlined digits indicate the difference to the exact result. All quantities are dimensionless.

M=1 M=2 Exact analytical | noas, Nyer
FEgs | 547.67691206 | 547.67483497 547.67483495 0,0
w1 1.00000000 1.00000000 1.00000000 1,0
w9 n/a 2.00003648 2.00000000 2,0
w3 2.19070765 2.19089026 2.19089023 0, 2
Wy n/a 3.00006435 3.00000000 3,0
ws n/a 3.19091687 3.19089023 1,2
weg 3.28606147 3.28633542 3.28633535 0, 3
wry n/a 4.00129579 4.00000000 4,0
ws n/a 4.28580642 4.28633535 1,3

Table 2. Same as Table 1 but for N = 1000 bosons with attraction K = +0.0001. Some
excitations are first uncovered at the M = 2 level of theory, i.e., they are not available (n/a)
within Bogoliubov—de Gennes theory (M = 1). Convergence with M to the exact results is
clearly seen. Note the interchange of order of some center-of-mass and relative coordinates’
excitations in comparison with the repulsive system. All quantities are dimensionless.

laboratory frame, where all bosons are equivalent, i.e., the separability to center-of-mass and
relative coordinates, which is special for harmonic traps, is not exploited.

We now move to attractive interaction and compute the excitation spectrum of N = 1000
bosons with K = 40.0001. The results are collected in Table 2 and show, as above, the capability
of LR-MCTDHB to uncover the missing excitations and to numerically-exactly converge to the
analytical results. The physical distinction of the missing excitations having one quantum of
center-of-mass excitation plus at least one additional quantum of excitation is readily seen in
Table 2. When comparing the repulsive and attractive systems, please note the interchange of
order of some center-of-mass and relative coordinates’ excitations.
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4. Concluding remarks

The linear-response theory of the multiconfigurational time-dependent Hartree for bosons
method for computing many-body excitations of trapped Bose-Einstein condensates has been
implemented for systems with general interparticle interaction. This allows us to investigate
the excitation spectrum of interacting bosons with, for instance, long-range interaction. As
illustrative examples we considered, separately, repulsive and attractive bosons within the
one-dimensional harmonic-interaction model. The many-body theory improves the accuracy
of excitations unveiled within Bogoliubov—de Gennes theory. Chiefly, the many-body linear-
response theory is capable of identifying all excitations, including the excitations which are not
unraveled within Bogoliubov-de Gennes equations, and to numerically converge to their exact
values. The results of the present work serve to benchmark the LR-MCTDHB method.

As a complementary result, we compactly represent the theory in a block-diagonal form.
This is made possible by identifying a complex transformation, applicable also for complex
wavefunctions and complex hermitian Hamiltonians. This will open up an avenue for treating
larger systems. We expect the LR-MCTDHB theory and its implementation for general
interparticle interaction to provide an important and proved probe into the many-body
excitations involved in the out-of-equilibrium dynamics of trapped BECs.
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Appendix A. Block diagonalization by a complex transformation
Consider the eigenvalue system

(4 200

where A, B and u, v are the blocks of a square matrix and its eigenvector, respectively. The
eigenvalue w is assumed to be real.

1 10
1 -16
Interestingly, the transformation matrix Q is neither a unitary nor an anti-unitary operator. Its
inverse exists and reads

1
Ql—ﬁ<}9 110> QQl—QlQ—<(1) ;’) (4.2)

Multiplying with Q from the left on both sides of Eq. (A.1) we find

1@( 5 & )ael))=(ale 2™ ) (o) == (e) 0o

f Tu+vh) o .
where g = 12 . Multiplying now Eq. (A.3) from the left with the transformed

Let us examine the transformation matrix Q = % < ), Eq. (7) of the main text.

%(u - V)
matrix we obtain the desired result in a block-diagonal form
(A —B0)(A + B0) 0 £\ off
( 0 (A+Bo)(A-Bo) ) lg) = &) (A4)

This concludes our derivation.

Using the operation of complex conjugation # above becomes redundant if A and B are real
quantities. In this specific case, which is the only one considered within Bogoliubov—de Gennes
equations in the literature, see, e.g., [31-33], Q becomes a unitary and real transformation.
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