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Abstract. We theoretically investigate the antiferromagnetic insulator phase in a three-
dimensional correlated system with spin-orbit coupling, the Fu-Kane-Mele-Hubbard model at
half-filling. We focus on the topological magnetoelectric effect which is described by the theta
term. A low-energy effective Hamiltonian is derived in the antiferromagnetic insulator phase.
Then with the use of a field-theoretical method, the theta term is derived as a consequence of
the chiral anomaly.

1. Introduction
Topological phases of matter have attracted a great deal of attention recently. Three-dimensional
(3D) topological insulators are one of such phases. They can be characterized by the topological
magnetoelectric response described by the so-called theta term. The theta term is given by [1]

Sθ =

∫
dtd3x

θe2

32π2ℏc
ϵµνρλFµνFρλ =

∫
dtd3x

θe2

4π2ℏc
E ·B, (1)

where Fµν = ∂µAν − ∂νAµ with Aµ being the electromagnetic four-potential. E and B are an
electric field and magnetic field, respectively. From this action, the cross-correlated response
of the electric polarization P and magnetization M is obtained as P = θe2/(4π2ℏc)B and
M = θe2/(4π2ℏc)E. In particle physics, the phenomenon described by the theta term is called
the axion electrodynamics, since θ is considered as the field operator of an elementary particle,
axion. In (time-reversal invariant) 3D topological insulators, the coefficient θ takes the quantized
value θ = π (mod 2π), while θ = 0 in normal insulators. However, it is known that the value of
θ can be arbitrary between 0 and π in time-reversal symmetry broken systems [2].

The interplay of spin-orbit coupling and electron correlation has been studied intensively,
in the search for novel phases and novel phenomena. One of the triggers is the discovery of a
novel Mott insulating state in a 5d correlated electron system with spin-orbit coupling [3]. It
should be noted that the emergence of topological phases such as quantum spin Hall insulator
[4], topological Mott insulator [5], topological magnetic insulator [6], and Weyl semimetal [7] has
been predicted theoretically. In this paper, we focus on the topological magnetoelectric response
of the antiferromagnetic insulator phase (i.e., a time-reversal symmetry broken phase) in a 3D
correlated system with spin-orbit coupling.
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Figure 1. (a) A diamond lattice. Each sublattice (blue and green) forms a fcc lattice. (b)
Mean-field phase diagram of the half-filled Fu-Kane-Mele-Hubbard model on a diamond lattice,
with the antiferromagnetic ordering set to the [111] direction, in the case of δt1/t = −0.5. In
the antiferromagnetic insulator (AFI) phase, the value of θ becomes nonzero and, as a result,
the topological magnetoelectric response arises.

2. Model and the mean-field phase diagram
The model we consider is the Fu-Kane-Mele-Hubbard model on a diamond lattice at half-filling.
The lattice structure of a diamond lattice is shown in Fig. 1(a). The Hamiltonian of the system
is given by

H =
∑
⟨i,j⟩,σ

tijc
†
iσcjσ + i

4λ

a2

∑
⟨⟨i,j⟩⟩

c†iσ · (d1
ij × d2

ij)cj + U
∑
i

ni↑ni↓, (2)

where c†iσ is an electron creation operator at a site i with spin σ(=↑, ↓), niσ = c†iσciσ,
ni = ni↑ + ni↓, and a is the lattice constant of the fcc lattice. d1

ij and d2
ij are the two nearest-

neighbor bond vectors which connect two sites i and j of the same sublattice. σ = (σ1, σ2, σ3)
are the Pauli matrices for the spin degree of freedom. The first through third terms of H
represent nearest-neighbor hopping, next-nearest-neighbor spin dependent hopping (i.e. spin-
orbit interaction), and on-site electron-electron interaction, respectively.

Let us express H0, the non-interacting part of the Hamiltonian, in terms of the 4×4 matrices
αµ which satisfy the Clifford algebra {αµ, αν} = 2δµν . The diamond lattice consists of two
sublattices (A and B), with each sublattice forming a fcc lattice. In such a case, it is convenient
to define the basis as ck ≡ [ckA↑, ckA↓, ckB↑, ckB↓]

T where the wave vector k is given by the
points in the first Brillouin zone of the fcc lattice. Then the single-particle Hamiltonian H0(k)

[H0 ≡
∑

k c
†
kH0(k)ck] is written as H0(k) =

∑5
µ=1Rµ(k)αµ, where the coefficients Rµ(k) are

given by [8]

R1(k) = λ[sinu2 − sinu3 − sin(u2 − u1) + sin(u3 − u1)],

R2(k) = λ[sinu3 − sinu1 − sin(u3 − u2) + sin(u1 − u2)],

R3(k) = λ[sinu1 − sinu2 − sin(u1 − u3) + sin(u2 − u3)],

R4(k) = t+ δt1 + t(cosu1 + cosu2 + cosu3),

R5(k) = t(sinu1 + sinu2 + sinu3).

(3)
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Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with a1 = a
2 (0, 1, 1), a2 = a

2 (1, 0, 1) and
a3 =

a
2 (1, 1, 0) being the primitive translation vectors. Note that we have introduced the lattice

distortion along the [111] direction, which results in the modification of the hopping strength for
the [111] direction as tij = t+δt1 while tij = t for the other three directions. The system becomes
gapped due to nonzero δt1, whereas the system is gapless when δt1 = 0. When 0 < δt1 < 2t
(δt1 < 0 or δt1 > 2t), the system is identified as a topological insulator (normal insulator) [8].
In the following, we set a = 1.

Let us perform the mean-field approximation to the interaction term and derive the mean-
field Hamiltonian of the system. At half-filling, spin-density wave (SDW) orderings are expected
to develop when on-site interactions are strong. In our model, due to the spin-orbit interaction,
the spin SU(2) symmetry is broken and the orientations of the spins are associated with the
lattice structure. Hence we assume the antiferromagnetic ordering between the two sublattices
in terms of the spherical coordinate (m, θ, φ):

⟨Si′A⟩ = −⟨Si′B⟩ = (m sin θ cosφ,m sin θ sinφ,m cos θ) ≡ m1ex +m2ey +m3ez, (4)

where ⟨Si′µ⟩ = 1
2⟨c

†
i′µασαβci′µβ⟩ (µ = A,B) with i′ denoting the i′-th unit cell. In the mean-field

decoupling process, both the Hartree and Fock terms are taken into account. After a calculation,
the mean-field Hamiltonian of the system is obtained as [9]

HMF = 2NUm2 +
∑
k

c†kHMF(k)ck, (5)

where HMF(k) =
∑5

µ=1 R̃µ(k)αµ with R̃1(k) = R1(k) − Um1, R̃2(k) = R2(k) − Um2,

R̃3(k) = R3(k) − Um3, R̃4(k) = R4(k), and R̃5(k) = R5(k). We have used the fact that
m2

1 +m2
2 +m2

3 = m2. N is the number of the unit cells, and the wave vectors k take N points
in the first Brillouin zone of the fcc lattice. From the mean-field Hamiltonian, we can readily
obtain the free energy at zero temperature for the SDW instability:

FSDW(m, θ, φ) = 2NUm2 − 2
∑
k

√∑5

µ=1
[R̃µ(k)]2. (6)

The ground state is given by the stationary condition ∂FSDW(m, θ, φ)/∂m = ∂FSDW(m, θ, φ)/∂θ =
∂FSDW(m, θ, φ)/∂φ = 0.

The phase diagram with antiferromagnetic ordering set to the [111] direction in the case of
δt1/t = −0.5 is shown in Fig. 1(b) as an example. Phase diagrams for other antiferromagnetic
ordering directions and for the positive value of δt1 are qualitatively same as Fig. 1(b). The
transition from the normal insulator phase to the antiferromagnetic insulator phase is of the
second order. We see from the phase diagram that the critical strength of the on-site interaction
Uc becomes larger as the strength of the spin-orbit interaction λ becomes larger. Such a behavior
can be understood from that the free energy (6) is characterized by the factor U/λ in R̃j(k)
(j = 1, 2, 3). Namely, the strong spin-orbit interaction effectively makes the on-site interaction
weaker. Similar results have been obtained in the Kane-Mele-Hubbard model, a 2D analog of
our model [10, 11]. However, as is shown below, what is peculiar to the antiferromagnetic phase
in the 3D Fu-Kane-Mele-Hubbard model is the emergence of the topological magnetoelectric
response described by the theta term.

3. Low-energy effective Hamiltonian and the theta term in the antiferromagnetic
insulator phase
In this section, we derive the theta term with the use of a field-theoretical method. To this end,
first we need to derive the low-energy effective Hamiltonian in the antiferromagnetic insulator
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phase. In the following, we consider the general case given by the order parameter (4). In the
non-interacting system with δt1 = 0, it is known that the energy band touching occurs at the
three X points where Xx = (2π, 0, 0), Xy = (0, 2π, 0) and Xz = (0, 0, 2π), and that massless
Dirac Hamiltonians are derived around these points [8]. Similarly when δt1 ̸= 0, massive Dirac
Hamiltonians are obtained. That is, the low-energy effective model near the Fermi level is
described by Dirac quasiparticles. We see that Dirac Hamiltonians can be obtained also in
the antiferromagnetic phase, by expanding the mean-field single-particle Hamiltonian HMF(k)
around the three X̃ points with k = X̃ + q, and retaining the terms up to the order of q:

HMF(X̃
x + q) = tqxα5 + 2λqyα2 − 2λqzα3 + δt1α4 − Um1α1,

HMF(X̃
y + q) = tqyα5 + 2λqzα3 − 2λqxα1 + δt1α4 − Um2α2,

HMF(X̃
z + q) = tqzα5 + 2λqxα1 − 2λqyα2 + δt1α4 − Um3α3,

(7)

where X̃x =
(
2π, Um2

2λ ,−Um3
2λ

)
, X̃y =

(
−Um1

2λ , 2π, Um3
2λ

)
, and X̃z =

(
Um1
2λ ,−Um2

2λ , 2π
)
. The

condition Umf ≪ 2λ (f = 1, 2, 3) is imposed. Here let us recall that the representation of
αµ is arbitrary as far as the Clifford algebra {αµ, αν} = 2δµν is satisfied. Further the above
three Dirac Hamiltonians are independent of each other. With the definition α5 = α1α2α3α4,
relabeling of αµ enables us to rewrite Eq. (7) as

HMF(X̃
x + q) = qxα1 + qyα2 + qzα3 + δt1α4 + Um1α5,

HMF(X̃
y + q) = qxα1 + qyα2 + qzα3 + δt1α4 + Um2α5,

HMF(X̃
z + q) = qxα1 + qyα2 + qzα3 + δt1α4 + Um3α5,

(8)

where we have rescaled the momenta q around each X̃ point. These three equations
are equivalent except for the α5 terms. Namely, the low-energy effective model of the
antiferromagnetic insulator phase is described by the Dirac fermions of three flavors characterized
by the α5 terms.

Then the Euclidean action of the Dirac fermions in the presence of an external electromagnetic
field Aµ is given by

SAFI =

∫
d4x

∑
f=1,2,3

ψ̄f (x)
[
γµDµ −Mfe

iκfγ5
]
ψf (x), (9)

where ψf (x) is a four-component spinor, Dµ = ∂µ + ieAµ, Mf =
√

(δt1)2 + (Umf )2, cosκf =
|δt1|/Mf , sinκf = Umf/Mf , and we have used the fact that α4 = γ0, α5 = −iγ0γ5 and
αj = γ0γj (j = 1, 2, 3). The subscript f denotes the flavor. Here we have considered the case
of δt1 < 0, namely the system is a normal insulator when U = 0. We employ the Fujikawa’s
method [12, 13] to derive the theta term from the above action. After applying the infinitesimal
chiral transformation defined by

ψf → ψ′
f = e−iκfdϕγ5/2ψf , ψ̄f → ψ̄′

f = ψ̄fe
−iκfdϕγ5/2 (dϕ≪ 1, ϕ ∈ [0, 1]) (10)

to the partition function Z =
∫
D[ψ, ψ̄]e−SAFI[ψ,ψ̄] infinite times, we obtain SAFI = SNI + Sθ [9],

where SNI is the action which represents the normal insulator phase in our model and Sθ is the
theta term:

SNI =

∫
d4x

∑
f

ψ̄f (x) [γµDµ −Mf ]ψf (x), Sθ = i

∫
d4x

(
∑

f κf )e
2

32π2ℏc
ϵµνρλFµνFρλ. (11)
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From the theta term, the value of θ in the antiferromagnetic insulator phase is given by

θ =
∑

f=1,2,3

κf =
∑

f=1,2,3

tan−1(Umf/|δt1|), (12)

where the order parameter mf is a function of U and λ. The region where θ ̸= 0 is shown in
Fig. 1(b). As mentioned in the introduction, the emergence of the theta term results in the
topological magnetoelectric response such that P = θe2/(4π2ℏc)B and M = θe2/(4π2ℏc)E.
Here note that the above expression of θ is valid when the condition Umf ≪ 2λ is satisfied, i.e.,
it is valid near the phase boundary.

4. Discussions and Summary
So far we have obtained an analytical expression for θ in the antiferromagnetic insulator phase
as a function of the on-site interaction strength U and the spin-orbit interaction strength λ.
It is known that the value of θ can be arbitrary between 0 and π in time-reversal symmetry
broken 3D systems, while θ = 0 in normal insulators and θ = π in 3D topological insulators.
The arbitrary value of θ means the time-reversal symmetry breaking of the system. Regardless
of its value, nonzero value of θ distinguishes axionic antiferromagnetic insulators from trivial
antiferromagnetic insulators. It should be noted that the theta term is derived only in odd
spatial dimensions. In one dimension, from the theta term S(1+1)D =

∫
dtdx θ

2πE, the electric
polarization P1D is obtained as P1D = θ/(2π). Namely, the ground state is polarized.

We see from the low-energy effective Hamiltonian (8) that the antiferromagnetic phase of our
model is characterized by the α5 terms. Actually, the matrix α5 breaks time-reversal symmetry
(and spatial inversion symmetry). Further, from the definition of the chiral transformation (10),
we see that the existence of the α5 terms is essential to generate nonzero values of θ. The
derivation of the low-energy effective Hamiltonian (8) is therefore crucial in this study.

Here let us briefly consider the case where the antiferromagnetic order parameter is fluctuating
around the ground-state direction as m(x, t) = [m1+ δm1(x, t)]ex+ [m2+ δm2(x, t)]ey+ [m3+
δm3(x, t)]ez. In such a case, it is easily shown from Eq. (12) that the deviation of the value of
θ from the ground-state value is given by δθ(x, t) ≈ U/|δt1|

∑
f δmf (x, t). This means that the

dynamical axion field can be realized by the antiferromagnetic spin-wave excitation, which leads
to the axionic polariton phenomenon [6]. As 3D correlated systems with spin-orbit coupling, for
example, iridium oxides could be experimental candidates.

To summarize, we have studied theoretically the half-filled Fu-Kane-Mele-Hubbard model on
a diamond lattice, focusing on the topological magnetoelectric response described by the theta
term. We have obtained a mean-field phase diagram in the on-site interaction strength versus
spin-orbit interaction strength plane. With the use of a field-theoretical method, the Fujikawa’s
method, the theta term was derived. The emergence of the topological magnetoelectric response
in the antiferromagnetic insulator phase can be understood as a result of the interplay of spin-
orbit coupling and electron correlation.
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