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Abstract. We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice
doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity
behavior are predicted. The first one is related to presence of uncompensated magnetic
moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic
susceptibility. These moments exhibit an anomalous growth with the impurity concentration,
which we attribute to the clustering mechanism. In an external magnetic field, impurities lead
to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of
the conical state. We analytically demonstrate that vacancies spontaneously generate a positive
biquadratic exchange, which is responsible for the above degeneracy lifting.

1. Introduction
Due to inherent competition of the principal interactions, frustrated magnets are susceptible to
effects at much lower energy scales that are determined by additional interactions, fluctuations,
or structural disorder. Though, the first two sources of degeneracy lifting have been
extensively studied in the literature, resulting in a wide range of theoretical models, a detailed
phenomenology of the impurity effects on frustrated magnets is lacking so far. Most of the
existing studies focus on a single impurity problem. These include magnetic susceptibility of
an impurity [1–3], spin renormalization and screening patterns around an impurity [4–7] and
partial relief of frustration [8].

In this work we study the effect of dilution with nonmagnetic impurities on the paradigmatic
frustrated model of the Heisenberg triangular-lattice antiferromagnet (TAFM) [9,10]. We predict
two essentially collective impurity phenomena, which develop only at finite concentration of
defects nimp. The considered spin Hamiltonian is an isotropic classical antiferromagnet on a
triangular lattice:

Ĥ = J
∑
〈ij〉

Si · Sj(1− pi)(1− pj)−H ·
∑
i

Si(1− pi). (1)

Impurities are introduced via the parameter pi, which is set to pi = 0 on regular sites and to
pi = 1 on impurity sites, hence, p2i = pi. Impurities are assumed to be randomly distributed
over the lattice and

∑
i pi = Nimp.
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Figure 1. (a) An example of spin distortions around the impurity in the classical 120◦ ordered
state. Shaded area shows all nearest neighbours up to the order 3. (b), (c) Simple clusters
of impurities with the strongest distortion of screening. Effective magnetic moment of these
configurations equals to m◦◦imp = 0.11 and m◦·◦imp = 0.08 respectively.

Our first result is a nontrivial dependence of an effective impurity moment on the fraction
of vacant sites nimp. In noncollinear magnets even in the absence of external magnetic field an
impurity induces transverse local field on its neighbors and leads to the screening of magnetic
moment of a missing spin. Wollny et al. [6] found that in the Heisenberg TAFM the magnetic
moment around a vacancy is equal to m◦imp = 0.039S.

Here we report a substantial growth of the effective moment of a single impurity at finite
concentrations of vacancies, observed in our numerical simulations. This growth is significant
even at low concentrations n 6 1%, causing deviations from independent impurity behavior
with mimp = m◦imp. We explain it by the effects of clustering of impurities. The results of
our numerical simulations, as well as the details of numerical methods, used in this study are
presented in the section 2.

The second effect of impurities considered in the present work is lifting of the continuous
ground state degeneracy of the Heisenberg TAFM in an external magnetic field. This degeneracy
gives rise to a rich phase diagram with various coplanar states [9–11] that can be understood
theoretically using the concept of order by disorder. In our recent article [12] we have obtained
numerically that vacancies doped into TAFM stabilize the conical ground state. Such a selection
takes place because of a positive biquadratic exchange produced by structural disorder. The
concept of an effective biquadratic exchange generated by quenched disorder in magnetic solids
was first suggested by Slonczewski in the context of magnetic multilayers [13]. In our previous
work on an impure TAFM [12] we have derived analytically a positive biquadratic exchange in
a model with weak bond randomness, see also [14]. In Sec. 3 we generalize the previous analytic
results by showing that the effective biquadratic exchange follows also from a weak site disorder.

2. Effective impurity moment
A removed magnetic moment in an antiferromagnetic insulator induces a net magnetic moment
in the system. For noncollinear magnetic structures the moment is, however, screened by a spin
texture resulting from the canting of the surrounding spins [5–7]. Such a spin canting of only
nearest neighbor spins is illustrated in Fig. 1(a). As a result, an impurity moment acquires a
non-universal fractional value, which depends on the system details. Wollny and collaborators [6]
have shown that a vacancy in the classical Heisenberg TAFM becomes slightly overcompensated,
i.e. at T = 0 the net magnetic moment is equal to m◦imp = 0.039S and has the same direction
as a missing spin. At finite temperatures in the absence of long range order this purely classical
moment is free to rotate in spin space leading to a Curie-like paramagnetic divergence of the
magnetic susceptibility at T → 0. In a system with a small but finite concentration of impurities,
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the impurity contributions sum up to give

χ(T ) =
Nimpm

2
imp

3T
+O(1). (2)

In this section we consider dependence of the effective impurity moment mimp on the
impurity concentration nimp. We have numerically investigated a finite system with a fixed
finite concentration of vacancies, measured mimp and studied how the impurity screening is
modified at finite nimp.

First we report results of Monte Carlo simulations of the classical nearest-neighbor Heisenberg
antiferromagnet (1) on rhombohedral L×L clusters with finite concentration of static vacancies.
Basically, we use the same algorithm, as in the previous works [11, 12]. We found that cluster
size has little effect on bulk thermodynamic quantities at T → 0 and, therefore, used moderate
cluster size L = 90 in all runs for this work, except for the cases of small amount of impurities
nimp < 0.01, where larger clusters are needed for better statistics.

Figure 2(a) shows the uniform magnetic susceptibility χ(T ) normalized per spin obtained
from the Monte Carlo simulations of the TAFM with and without impurities as

χ =
1

3TL2

〈(∑
i

Si

)2〉
. (3)

The main difference between the curves is the emergent 1/T divergence of χ at low temperatures,
which becomes stronger with increasing nimp. This upturn may look counterintuitive as no
extra magnetic moments are brought into the system. Note that our Monte Carlo results for
χ(T ) closely resemble the susceptibility data measured for nominally pure TAFM materials, for
example, for LuMnO3 [15].

We associate an average magnetic moment mimp with every impurity and interpolate the
susceptibility curves at T → 0 with Eq. (2) to determine its value. In addition, we obtain
independent results for the impurity moments mimp by another method: direct calculation of

m2
imp =

1

Nimp

(∑
i

Si

)2
(4)

in the classical ground state at zero temperature. The algorithm of the search of the ground
state has been described in details in the works [12, 14]. Note that mimp, obtained by both
methods was averaged over at least 200 random impurity configurations.

Figure 2(b) presents the main result of this section: a nontrivial growth of single impurity
moment with concentration. Values, obtained by the two methods (displayed by full and open
circles respectively) match perfectly and in the following we do not make the difference between
the two methods. The growth is observed even at small nimp ∼ 1%, which is somewhat
surprising as at such weak dilution one may expect a nearly independent impurity behavior
with mimp = m◦imp. Indeed, Fig. 2 (b) shows that mimp is significantly renormalized from the
single impurity value, even at the lowest considered nimp = 0.2%, which is comparable to the
case of a single impurity on a cluster with L = 12, studied in the work of Wollny et al. [6].

One possible explanation of growing mimp is an assumption that screening clouds from
different impurity sites interact, and self-average. According to Ref. [6, 16] readjustment angles
of spins, surrounding an impurity decay as δΘ(r) ∼ 1/r3 at long distances. For a finite
concentration of impurities one may expect cut off of individual screening clouds at average

distances R ∼ n
−1/2
imp . It leads to the modification of screening, consistent with the square root

dependence on vacancy fraction:

δm ∼
∫

Θ(r)|l(r)|d2r ∼ n1/2imp. (5)
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Figure 2. (a) Magnetic susceptibility for different concentrations of vacancies, from our Monte
Carlo simulations. The Curie-like singularity at T → 0 gives the value of effective impurity
moment mimp. (b) Growth of effective vacancy moment with vacancy concentration obtained
using susceptibility interpolation (full circles) and direct measurement at the ground state (open
circles). Open squares correspond to simulation of the system with impurities, distributed at a
distance from each other. Dashed line and a big marker at nimp = 0 show m◦imp obtained in the
work [6].

Here l(r) - is a vector, pointing in the direction spin distortion, and results only in a prefactor,
which is omitted. However, the measured mimp (fig. 2 (b)) does not fit to this procedure, and
therefore demands for different explanation of the observed dependence.

We ascribe growth of impurity moment to the effects that are quadratic in nimp. Indeed,
an individual impurity moment is strongly screened to a very small value m◦imp. Hence, one is
forced to consider statistically rare cases of two impurities occupying nearby sites, see Figs. 1(b)
and (c). If such impurity configurations have moments, which are not very well screened and
which are significantly larger than m◦imp, their impact on the net magnetic moment and the
low-temperature susceptibility may be quite significant.

We measured mimp for a few simple vacancy configurations and show in Figs. 1(b) and (c)
two impurity clusters with the largest values of the effective magnetic moment. The calculations
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yield m◦◦imp = 0.11 and m◦·◦imp = 0.08 respectively, the result, that is several times larger, than
m◦imp. Along with the large coordination number of the triangular lattice, it overcomes the small

statistical weight P ∼ n2imp of these configurations.
In addition, we have performed similar numerical simulations restricting vacancies from being

placed within the first three neighbors from each other. The respective exclusion region is is
shown by the shaded area in Fig. 1(a). In the first place, such a computation serves to verify
the above hypothesis; second it may also model weak correlations in the structural disorder,
which develop in real solids due to elastic tension etc. The results are plotted in Fig. 2(b) with
open square markers. They demonstrate only a slight growth of mimp from m◦imp. Therefore, at
distances exceeding 2–3 lattice spacings, impurities only barely interact and behave completely
individually. These results strongly support the above explanation of the growth of impurity
moment due to clustering of vacancies.

3. Disorder induced biquadratic exchange
In this section we elaborate on the mechanism of the degeneracy lifting in the TAFM as well as in
a wide class of frustrated models produced by nonmagnetic impurities. In finite magnetic fields
0 < H < Hsat the TAFM exhibits continuous degeneracy of ground states obeying the classical
constraint S4 = H/3J . Thermal [9, 10] and quantum [17] order by disorder are responsible for
selecting the most collinear spin configurations. These include the coplanar ‘Y’ and ‘2:1’ states
below and above 1

3Hsat, respectively, and the collinear up-up-down state at the 1/3 magnetization
plateau. The resulting complex phase diagram of the classical Heisenberg TAFM was obtained
from the Monte Carlo simulations in [11]. At the phenomenological level, such a selection can
be straightforwardly explained by appearance of an effective biquadratic exchange with negative
sign: −(Si·Sj)

2. Such term was indeed obtained in the lowest order of the real-space perturbation
theory for quantum [18, 19] and thermal [20] fluctuations. Below we present the opposite effect
of order by structural disorder. We show that a small finite concentration of weak vacancies may
be described by a positive biquadratic exchange +(Si · Sj)

2 in an effective spin Hamiltonian.
Therefore, structural disorder stabilizes the least collinear spin configurations, which in the case
of the TAFM correspond to conical states, and competes with conventional order by disorder
mechanism.

For analytic derivation we need to modify the model for impurities, introduced in Eq. (1).
As was discussed in the previous section, a true vacancy produces a strong long-range distortion
of the surrounding spin structure. Therefore, below we restrict ourselves to a model of weak
classical impurities with reduced spin length Si(1 − εpi), and ε � 1. This approximation is
analogous to restricting the impact of impurities to its nearest neighbors only, as illustrated in
Fig. 1(a). Numerical results of our previous work [12] demonstrate that this approximation does
not affect the conclusion. Therefore, we expect the state selection produced by real vacancies
to be even more robust.

In the following we follow the ideas of the real-space perturbation theory [18–20]. We start at
T = 0 with an arbitrary classical ground state of the pure system and express the Hamiltonian
in terms of small spin deviations, caused by impurities. Then, we collect all single-site terms
and find a static distortion of the equilibrium magnetic structure from a simple minimization
procedure. The remaining terms, that represent interaction of perturbations, will be neglected,
as they produce higher-order corrections [14].

An arbitrary classical ground state of the pure system is characterized by a set of angles θij
between neighboring spins. Performing transformation to a local rotating frame we obtain

Ĥ = J
∑
〈ij〉

[
Sy
i S

y
j + cos θij

(
Sz
i S

z
j + Sx

i S
x
j

)
+ sin θij

(
Sz
i S

x
j − Sx

i S
z
j

)][
1− ε(pi + pj)

]
+ ĤZ. (6)

The local ẑi axes are chosen along the spin direction on each site, whereas the x̂i axes lie
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within the plane, formed by a pair of spins Si and Sj . Impurities produce distortions of the
spin structure, generating small transverse components components of spins Sx and Sy that
correspond to in plane and out of plane spin deviations. Then one can write

Sz =
√

1− (Sx)2 − (Sy)2 ≈ 1− 1

2
[(Sx)2) + (Sy)2] (7)

All terms arising from interaction of spin deviations on adjacent sites are neglected. Therefore
the leading ground-state energy correction comes from the contribution that is linear in in-plane
spin deviations Sx and disorder ε

V1 = Jε
∑
〈ij〉

sin θij
(
Sx
i pj − Sx

j pi
)
. (8)

Physically, terms linear in spin deviations appear due to a local relief of magnetic frustration
caused by impurities. Excluding the out of plane spin components Sy that do not enter in V1,
and we are left with

Ĥ =
∑
i

[
1

2
Hloc(S

x
i )2 + JεSx

i

6∑
j=1

sin θijpj

]
. (9)

Here Hloc = |∂Eg.s./∂Si| = 3J is a local field, which is the same on all three sublattices of the
pure TAFM irrespective of the applied field H < Hsat. Minimizing this quadratic form, we
obtain the correction to the ground state energy, generated by disorder. Note that throughout
the derivation, we omitted all constant terms, concentrating only on the configuration-dependent
correction.

∆E = −ε
2nimp

Hloc

∑
〈ij〉

sin2 θij =
ε2nimp

3J

∑
〈ij〉

(Si · Sj)
2. (10)

Similarly to the case of bond disorder [12] we obtained, that realistic impurities in the TAFM
favor the conical spin state with the smallest values of cos θij , as spin relaxation from the least
collinear configurations produces the largest energy gain. The realistic model, given by equation
(1) produces the similar positive biquadratic exchange term as random bond disorder but in
principle suits more to describe numerical simulations of Ref. [12] as well as experiments on
doped frustrated systems. Finally, we note that the above derivation stays completely intact for
the TAFM with a planar anisotropy considered in the very first work [9]. In this case the conical
states are suppressed by the XXZ anisotropy in the spin Hamiltonian. Still, the classical
degeneracy is present within the manifold of the coplanar states [9]. In this case a positive
biquadratic exchange will stabilize an anti-Y sate in the whole range of magnetic fields [12].

4. Conclusions
In this work we have described two effects, which appear in the frustrated Heisenberg triangular
antiferromagnet with a small but finite density of nonmagnetic impurities. First, we demonstrate
that an effective impurity moment revealed in the paramagnetic Curie tail of the magnetic
susceptibility exhibits a substantial growth with the impurity concentration. We attribute this
growth to an anomalously small value of the magnetic moment of an isolated vacancy in the
TAFM, and, as a consequence, to significance of correlated impurity effects ∼ n2imp. This effect
may be quantitatively different in other noncollinear helical antiferromagnets with not so small
values of vacancy moments. Second, in the model of ‘weak’ impurities we have analytically
derived an effective positive biquadratic exchange generated by the structural disorder. Such an
interaction term competes with the effect of thermal and quantum fluctuations and plays a very
important role in the phenomenology of the complex phase diagram of the doped TAFM [12].
With minor modifications, mainly in the value of Hloc, the presented derivation holds for
impurities in other geometrically frustrated magnets.
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