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Abstract. We have discussed the dynamics of photo-induced magnetic solitons in the
perovskite GdSrMnO by using quantized massive gauge fields, which are introduced theoretically
in the path-integral method. For the first time, we propose the magnetic relaxation mechanism
of photo-induced magnetic solitons by using the effective Hamiltonian with the p-magnetic
solitons interaction and the Langevin equation.

1. Introduction
In the perovskite manganites, charge, spin, orbital, and lattice degrees of freedoms are strongly
connected to each other, showing various kinds of the electronic phase, such as charge ordered and
orbital ordered insulator, ferromagnetic metal, antiferromagnetic insulator, and so on. Tokura
[1,2] has reported the photo-induced insulator-metal transition in the perovskite manganites.
The photo-excitation above the charge gap in the charge-orbital ordered state can cause the
hopping of the electrons or holes into the neighboring site, hence forming magnetic solitons in
the regular charge-orbital ordered state. Miyano et al.[3] and Fiebig et al.[4] have reported the
photo-induced transition between the antiferromagnetic insulator and the ferromagnetic metal
in the manganites. Matsubara et al.[5] have investigated the ultrafast spin and charge dynamics
in the course of a photo-induced phase transition from an insulator with short-range charge
order and orbital order to a ferromagnetic metal in perovskite-type PrCaMnO. Ishikawa and
coworkers[10-14] have studied theoretically the photo-induced phase transition in the perovskite
manganites. The photo-induced dynamic magnetic effect has been studied in the II-VI-based
diluted magnetic semiconductors (DMS) and III-V-based DMS, and interesting phenomena such
as the photo-induced magnetic polaron have been discussed [6]. These works stimulated us to the
study of the carrier-induced magnetic solitons, which is an interesting and challenging subject.
Kanazawa[7-9] has discussed the insulator-metal trasnsition and large magnetoresistance effects
in DMS, using the gauge-invariant Lagrangian density for the magnetic solitons. Kanazawa[15]
has discussed the percolation-like insulator-metal transition, the conduction mechanism, and
localization of photo-induced magnetic solitons with holes in the perovskite PrCaMnO. Recently
Kanazawa[16] has proposed the percolation-like dynamics of hole-induced magnetic solitons
and the colossal magnetoresistance mechanism in doped manganites from the standpoint of
the random resistor network and percolation-scaling method. In addition, the long-relaxation
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behavior of the spin has been discussed by using the effective Hamiltonian[16] and the frustration-
limited domain[17,18]. López et al.[19] have reported the glassy behavior such as slow relaxation
in the magnetization in La1−xCaxMnO3. In the series (La1−xTbx)2/3Ca1/3MnO3, Teresa et
al.[30] have proposed the existence of two different volume states associated with the metalliclike
ferromagnetic state and the semiconductorlike paramagnetic, spin-glass, or antiferromagnetic
state, respectively. Small-angle neutron scattering experiments[30] reveal the existence of
magnetic solitons for x ≤ 0.33. The magnetic correlation length diverge at Tc for x ≤ 0.25
while magnetic clusters of around 18 Å stabilized in the x = 0.33 compound at low temperature.
Muon spin relaxation experiments confirm the absence of microscopic local magnetic order for
the x = 0.33 compound and give evidence for the existence of static local fields randomly
oriented below ∼ 44 K, bringing about a glassy magnetic state below the temperature. In
the case of La0.7−xYxCa0.3MnO3 manganite[20], the slow relaxation is interpreted as due to
ferromagnetic clusters, which grow with decreasing temperature down to a temperature at
which they freeze due to several intercluster frustration. This might correspond to the cluster
glass. Recently Sasaki and Kanazawa[21] have proposed the mean field theory of the cluster
glass mechanism and introduce theoretically the spin-glass temperature Tg of doped manganite
(Sm1−xCdy)0.55Sr0.45MnO3. The possibility of a new kind of glass and slow spin-relaxation in
manganites is a challenging and quite interesting issue that deserves further experimental and
theoretical work. In this study, for the first time we shall propose the magnetic relaxation
mechanism of photo-induced magnetic solitons in the perovskite GdSrMnO, extending the
previous formula[15].

2. A model system and dynamics of magnetic solitons
Several optical data[31,32] present evidence of small magnetic polarons (magnetic solitons) above
the ferromagnetic ordering tempreature Tc, in the doped manganites with perovskite structures.
The slow magnetic-relaxation in manganese perovskites is interpreted as due to ferromagnetic
clusters (solitons), which grow with decreasing temperature down to a temperature at which
they freeze due to severe intercluster frustration. Glassy behaviours of manganites are quite
unusual and difficult to classify according to existing theories or phenomenology of single-phase
materials with random interaction[33]. Matsubara et al.[22] have investigated the ultrafast
spin and charge dynamics in the course of a photo-induced phase transition from an insulator
with short-range charge order and orbital order to a ferromagnetic metal in perovskite-type
GdSrMnO. The magnetization increases with the time constant of 0.5 psec and decay in ∼ 10
psec. The interesting point is that the decay time increases with the excitation density. It has
been known that the ferromagnetic ordering is due to double-exchange-like interactions of Mn
3d-eg state in the perovskite CdSrMnO. It has been suggested that the ferromagnetic interaction
induced by the hole seems to be cooperative and non-linear. The size of the magnetic soliton will
be determined by competition between the ferromagnetism with the double-exchange process
and the antifferomagnetism with the superexchange process. Here we must analyze the quantized
magnetic solitons. Thus we shall use the non-perturbed method of topology in gauge fields by G.
’t Hooft[34]. In order to argue in the gauge-invariant formula[34-37], we shall introduce the non-
linear gauge fields (Yang-Mills fields) Aa

µ, which mediate the effective ferromagnetic interaction
induced by the hole. In addition, based on the important idea[23], it has been proposed that the
hedgehog-like soliton in three-dimensional system is specified by rigid-body rotation, which is
related to gauge fields of SO(4) symmetry for S3[24,25,35]. Thus it is thought that the non-linear
gauge fields Aa

µ introduced by the hole have a local SO(4) symmetry. Then it is assumed that the
SO(4) quadruplet fields, Aa

µ, are spontaneously broken around the photo-induced hole through
the Anderson-Higgs mechanism, in the perovskite CdSrMnO. The symmetry breaking contains
the effects from the electronic frustration and the Jahn-Teller frustration around the doped hole
in perovskite CdSrMnO[16,34,37]. We set the symmetry breaking ⟨0|ϕa|0⟩ = ⟨0, 0, 0, µ⟩ of the

International Conference on Strongly Correlated Electron Systems 2014 (SCES2014) IOP Publishing
Journal of Physics: Conference Series 592 (2015) 012105 doi:10.1088/1742-6596/592/1/012105

2



Bose field ϕa in the Lagrangian density as follows,
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After the symmetry breaking ⟨0|ϕa|0⟩ = ⟨0, 0, 0, µ⟩, we can obtain the effective Lagrangian
density.
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where Sj is the spin of Mn, Oj is the pseudospin operator for the orbital degree of freedom. ψ
is the Fermi field of the hole, m1 = µ · g4, m2 = 2(2)1/2λ · µ. Here ĵ corresponds to the reverse
direction of the spin one of the hole. The effective Lagrangian describes three massive gauge
fields A1

µ, A2
µ, and A3

µ, and one massless gauge field A4
µ. The generation function Z[J ] for Green

functions[38] is shown as follows,

Z[J ] =
∫

DADBDSDCDC̄Dψ+DψDϕ
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· exp i
∫

d4x (Leff + LGF+FP + J · Φ) , (3)

LGF+FP = Ba∂µAa
µ +

1
2
αBaBa + iC̄a∂µDµC

a, (4)

where Ba and Ca are the Nakanishi-Lautrup fields and Faddeev-Popov fictitious fields,
respectively.

J · Φ ≡ JaµAa
µ + Ja

BB
a + JOO + JS · S + J̄a

C · Ca

+ Ja
C̄C̄

a + η̄ψ + ηψ+ + Ja
ϕϕa (5)

Where J · Φ represents the interaction terms between fields Φ and external sources J .
BRS-quartet[26,27] in the present theoretical formula are (ϕ1, B

1, C1, C̄1), (ϕ2, B
2, C2, C̄2),

(ϕ3, B
3, C3, C̄3), and (A4

L,µ, B
4, C4, C̄4). Where A4

L,µ is the longitudinal component of A4
µ.

Thus we need these fields for the unitality condition, although these fields are unobservable
and fictitious ones. Because masses of A1

µ, A2
µ and A3

µ are created through the Anderson-Higgs
mechanism by introducing the hole, the fields A1

µ, A2
µ and A3

µ exist around the hole within the
length of ∼ 1/m1 ≡ RC . Where m1 = µ · g4 is the mass, which is introduced through the
symmetry breaking in eq.(1), of gauge fields A1

µ, A2
µ and A3

µ. From the first term in eq.(2), the
spins S of Mn atoms are induced in the ferromagnet state, where the average spin is parallel to ĵ
direction, within the length of ∼ RC around the hole. That is, the effective Lagrangian represents
that the ferromagnetically aligned Mn spins form clusters, in which the hole is trapped, with
the radius, RC ∼ 1/m1. In addition Kanazawa[39] has already discussed the creation process of
photoholes in manganites. In order to discuss the dynamics of magnetic solitons, we envisage
an effective Hamiltonian, H, for the magnetic-soliton, O(rĩ), which is introduced in eq.(2). In
order to discuss the spin dynamics and electron hopping, we envisage an effective Hamiltonian,
H, for the magnetic-soliton, O(rĩ),

H = −J
∑

<ĩ,j̃>

cos(θĩj̃/2)O(rĩ) ·O(rj̃)

+
1
2
K

∑
ĩ̸=j̃

O(rĩ) ·O(rj̃)
|rĩ − rj̃ |

(6)

and the first sum taken only over nearest neighbor(the distance between each magnetic soliton
is ≤ 2Rc) and the second taken over all pair(̃i ̸= j̃ means |rĩ − rj̃ | ≫ 2Rc) [28]. This second
term, which the power law for Long-range pair of interaction between solitons, is derived from
the massless U(1) gauge fields A4

µ. The detailed derivation should be refered to the theory by
G. ’t Hooft[34]. Sĩ ≡

∑
i∈(4/3)πR3

c

Si. That is, Sĩ is the summation of the ferromagnetic spin, Si,

of Mn within ∼ (4/3)πR3
c (̃i) around the photo-induced hole at the site rĩ. Sĩ represents the

effective spin of the soliton O(rĩ). θĩj̃ is the angle between Sĩ and Sj̃ . The first term corresponds
to short-range ferromagnetic ordering interaction and the second corresponds to long-range
frustration. If g3 in eq.(1) is assumed to be equal to (π/K)1/2 [28], where K is the long-range
interaction constant in the effective Hamiltonian in eq.(6). Although the first term of the effective
Hamiltonian in eq.(6) cannot be derived immediately from the effective Lagrangian in eq.(2),
this term can be introduced approximately as follows. When the magnetic soliton,O(rĩ), with
the effective spin Sĩ is located in the nearest neighors of the magnetic soliton,O(rj̃), with the
effective spin Sj̃ , holes are hopping between two solitons O(rĩ) and O(rj̃). If Sĩ is parallel to
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Sj̃ , the exchange interaction induces much reduction of the kinetic energy. In order to discuss
the correlation among spins Sĩ, we shall consider by the effective Hamiltonian with the p-spins
interaction term,

Heff = −
N∑

ĩ1<...<ĩp

Kĩ1...ĩp
Sĩ1

. . . Sĩp
+

N∑
ĩ

hĩSĩ (7)

The spherial spin-constraint is
∑N

ĩ=1
S2

ĩ
= lN , using

∑N
ĩ=1

(S2
ĩ
− l) = 0. The couplings are

Gaussian variables with zero mean and average K2
ĩ1...ĩp

= p!
2(lN)p−1 . The relaxation dynamics is

given by the Langevin equation,

∂tSĩ(t) = −β δHeff

δSĩ(t)
− z(t)Sĩ(t) + ηĩ(t) (8)

β is 1/T. Where ηĩ(t) are Gaussian random variable, with zero mean and variance 2. The second
term on the right-hand side enforces the spherical constraint. The two-time correlation and the
linear response functions are represented as,

C(t, t
′
) =

1
N

N∑
ĩ=1

< Sĩ(t)Sĩ(t
′
) > (9)

R(t, t
′
) =

1
N

N∑
ĩ=1

∂ < Sĩ(t) >
∂hĩ(t

′)
(10)

The dynamical equations for them can be obtained from eq.(8) through standard function
methods[29].

∂tC(t, t
′
) = −[1 − pβε(t)]C(t, t

′
) + 2R(t′, t)

+
pβ2

2

∫ t
′

0
dt”Cp−1(t, t”)R(t′, t”)

+
pβ2(p− 1)

2

∫ t

0
dt”R(t, t”)Cp−2(t, t”)

· C(t”, t′). (11)

∂tR(t′, t) = −[1 − pβε(t)]R(t′, t) + δ(t− t′)

+ µ(p− 1)
∫ t

t′
dt”R(t, t”)Cp−2(t, t”)R(t”, t′) (12)

ε(t) can be identified as the energy per spin multiplying eq.(8) by Sĩ(t
′), averaging over the

noise and the couplings and taking the limit t′ → t. From the first term in eq.(11) in the
condition of pβε(t) < 1, it is seen that the relaxation time is ∝ 1

1−pβε(t) approximately. When
the intensity of the optical pulse increases, number of hole-induced magnetic solitons increses.
As a result, p increases and then the relaxation time increases. This is consistent with the recent
experiment[22]. For τ ≡ t − t′ finite and τ/t −→ 0 asymptotically, time homogeneity and the
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fluctuation-dissipation theorem (FDT) hold. For large values of τ , CFDT(τ) tends to a value q
and RFDT(τ) tends to zero. In the FDT regime[40], eq.(11) yields(

∂

∂τ
+ 1

)
CFDT(τ) + (µ+ pβε∞)[1 − CFDT(τ)]

= µ

∫ τ

0
dτ”Cp−1

FDT(τ − τ”)
dCFDT(τ”)

dτ”
(13)

with the asymptotic energy ε∞ given by

ε∞ = −β
2

[
(1 − qp) + pqp−1

∫ 1

0
dλ”g(λ”)Cp−1(λ”)

]
. (14)

Here g(λ” ≡ t′/t) = tR(t, t′).
The correlation decays to a value q determined by

1 − pβε∞ + µ(1 − qp−1) = − 1
1 − q

. (15)

3. Conclusion
The photo-induced magnetic soliton in the perovskite CdSrMnO has been introduced, by using
the theoretical formula, which is on the gauge-invariant effective Lagrangian density. We have
discussed the dynamics of photo-induced magnetic solitons. We propose the magnetic relaxation
mechanism of photo-induced magnetic solitons in the perovskite CdSrMnO by using the effective
Hamiltonian with the p-magnetic solitons interactions and the Langevin equation.
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