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Abstract. The superfluid state in the attractive Hubbard is studied for the stacked square
lattices to simulate the two- to three-dimensional crossover effects. We use the variation
cluster approximation to calculate the order parameter and pair coherence length from the
weak-coupling BCS state to the strong-coupling BEC state at T = 0 K. We show that in the
weak-coupling BCS region the density of states at Fermi level plays an important role in the
dimensional crossover of the superfluid state but in the strong-coupling BEC region the quantum
fluctuations depending on the dimensionality of the system play an essential role.

1. Introduction
The physics of the crossover between the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime
and the strong-coupling Bose-Einstein condensed (BEC) limit has long been one of the major
issues in condensed matter physics [1, 2]. In systems of ultracold fermionic atoms [3], a tunable
pairing interaction associated with the Feshbach resonance enables one to observe the crossover
between the BCS- and BEC-type superfluid states experimentally [4]. Recently, the two-
dimensional (2D) phenomena have been discussed in the ultracold fermionic gases prepared
by modifying the 1D optical lattices. Also, by tuning the strength of a periodic potential of the
optical lattice, the 2D to three-dimensional (3D) crossover behaviors have been investigated in
a very controlled manner [5, 6, 7, 8, 9].

In this paper, motivated by the above development in the field, we study the dimensional
crossover effects in the ultracold fermionic systems, focusing in particular on their superfluid
states. Here, we adopt the attractive Hubbard model for spin-1/2 fermionic atoms and
simulate the dimensional crossover using the 2D square lattices stacked with the controllable
interplaner hopping parameter. We employ the variational cluster approximation (VCA), one
of the quantum cluster methods, where unlike in the dynamical-mean-field-theory (DMFT)
calculations the effects of spatial correlations of atoms can be taken into account. We thereby
calculate the order parameter and pair coherence length from the weak-coupling BCS to strong-
coupling BEC states as a function of the interplaner hopping parameter at T = 0 K. We will show
that in the weak-coupling BCS region the density of states (DOS) at the Fermi level plays an
important role in the dimensional crossover but the quantum fluctuation due to dimensionality
of the system plays an important role in the strong-coupling BEC region.
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Figure 1. (a) The stacked 2D square lattices and (b) DOS of the noninteracting band structure
of our model.

2. Model and method
2.1. Attractive Hubbard model with the interplaner hopping parameter
To discuss the dimensional crossover in the superfluidity, we consider the attractive Hubbard
model defined on the stacked square lattices shown in Fig. 1(a). The Hamiltonian reads

H = −
∑
⟨i,j⟩,σ

tij

(
c†iσcjσ +H.c.

)
− U

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ, (1)

where ciσ (c†iσ) is the annihilation (creation) operator of a fermion with spin σ (=↑, ↓) at site i
and niσ is the number operator of a fermion with spin σ at i site. tij is the hopping parameter
between the nearest-neighbor sites ⟨ij⟩, U (> 0) is the attractive on-site Hubbard interaction
and µ is the chemical potential. In this paper, we assume the system of stacked 2D square
lattices coupled with the interplaner hopping parameter [see Fig. 1(a)]: we assume the hopping
parameters in the xy-plane as tij = t and those of the z-direction as tij = tz. The dimensional
crossover is thus controlled by tz with 0 ≤ tz ≤ t, where tz = 0 for the 2D square lattice and
tz = t for the 3D cubic lattice. The bandwidth of the noninteracting band structure D = 4t+2tz
is used as the unit of energy when we consider the calculated physical quantities at different tz
values. It is well known that the s-wave superfluid state is realized in this model in the two
and higher dimensions at T = 0 K for all values of U (> 0) and in the entire particle density
[10, 11, 12]. In particular, the BCS-BEC crossover in the attractive Hubbard model has been
studied in detail by DMFT [13, 14, 15, 16, 17, 18] and also recently by VCA [19]. However, not
much is known of its dimensional crossover.

2.2. Variational cluster approximation
We employ the method of VCA [20, 21], which is based on the self-energy functional theory
(SFT) [22]. The trial self-energy for the variational method is generated from the exact self-
energies of the disconnected finite-size clusters, which act as a reference system. The variational
Hamiltonian is defined as H′ = H+Hpair +Hlocal with

Hpair = ∆′
∑
i

(
c†i↑c

†
i↓ +H.c.

)
(2)

Hlocal = ε′
∑
i,σ

niσ, (3)
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Figure 2. Calculated tz dependence of the anomalous expectation value Φ = ⟨ci↑ci↓⟩ and order
parameter ∆ = UΦ as a function of U/D at (a) half and (b) quarter filling. The insets enlarge
the weak-coupling region.

where the Weiss field for the s-wave pairing ∆′ and the on-site potential ε′ are the variational

parameters. We use the Nambu formalism Ψ†
i = (c†i↑, ci↓) to solve the eigenvalue problem by the

Lanczos exact-diagonalization method. We hereafter denote all the 2Lc × 2Lc Nambu matrices
by a ‘hat’ on top. We use a Lc = 2 × 2 × 2 = 8 site cluster as a reference system, whereby
the effects of spatial correlations within this cluster are taken into account exactly. Within the
SFT, the grand potential at T = 0 K is given by

Ω = Ω′ − 1

N

∮
C

dz

2πi

∑
K

ln det
[
Î − V̂ (K)Ĝ′(z)

]
, (4)

where Ω′ is the grand potential of the reference system, Î is the unit matrix, V̂ is the hopping
parameter between the adjacent clusters and Ĝ′ is the exact Green’s function of the reference
system. K-summation is made in the reduced Brillouin zone of the superlattice and the contour
C of the frequency integral encloses the negative real axis. The variational parameters ∆′ and ε′

are optimized based on the variational principle, i.e., (∂Ω/∂∆′, ∂Ω/∂ε′) = (0, 0). The solution
with ∆′ ̸= 0 corresponds to the superfluid state. The average particle density n (= ⟨niσ⟩) is
expressed as

n =
1

NLc

∮
C

dz

2πi

∑
K

Lc∑
i=1

Gii(K, z), (5)

where G is the diagonal term of the Lc × Lc matrix Ĝ(K, ω) =
[
Ĝ′−1(ω) − V̂ (K)

]−1
. The

chemical potential µ is determined to keep the particle density at a given value of n.

3. Results of calculations
3.1. Order parameter
Let us first discuss the anomalous expectation value Φ = ⟨ci↑ci↓⟩; the order parameter is given
by ∆ = UΦ. Within the framework of VCA, this is defined as

Φ =
1

NLc

∮
C

dz

2πi

∑
K

Lc∑
i=1

Fii(K, z), (6)
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where F is the anomalous (or off-diagonal) term of the Green’s function Ĝ(K, ω).
In Fig. 2, we show the calculated results for Φ as a function of U/D at half and quarter

fillings. In the weak-coupling region, where U/D ≪ 1, we find that Φ increases exponentially
with U and moreover, with increasing tz, Φ decreases at half filling and increases at quarter
filling. These behaviors may be understood within the BCS mean-field theory, where the order
parameter is given as ∆ ∝ exp[−1/Uρ(εF )] with the DOS at the Fermi level ρ(εF ). Thus,
Φ increases exponentially with U . Also, the dimensional crossover from 2D to 3D may be
understood via the behavior of ρ(εF ) [see Fig. 1(b)]; the DOS of the 2D square lattice has a van
Hove singularity at the Fermi level at half filling, which decreases with increasing tz, but ρ(εF )
at quarter filling increases with increasing tz. The dimensional crossover (or the tz dependence)
of Φ in the weak-coupling region may thus be understood.

In the strong-coupling region, where U/D ≫ 1, we find that Φ increases with increasing
tz, irrespective of the band filling (see Fig. 2). At U/D → ∞, Φ is given by

√
n(1− n) in

the mean-field theory, irrespective of the spatial dimension of the system, and thus Φ = 1/2
at half filling (n = 1/2 per spin) and Φ =

√
3/4 at quarter filling (n = 1/4 per spin). Now,

in the strong-coupling region with finite U/D values, we can understand the behavior of Φ
in terms of the effective spin-1/2 Heisenberg model in a magnetic field, which is obtained
by the strong-coupling expansion of the attractive Hubbard model. The Hamiltonian reads
Heff =

∑
⟨i,j⟩ JijSi · Sj − h

∑
i S

z
i , where we use the particle-hole transformation ai↑ = ci↑

and ai↓ = (−1)ic†i↓ [23], and define the spin operator Si =
∑

α,β a
†
iασαβaiβ/2. The exchange

interaction is given by Jij = 4t2ij/|U | with Jij = J = 4t2/|U | in the xy-plane and Jij = Jz =

4t2z/|U | in the z-direction, and the magnetic filed is given by h = 2µ + |U |. The superfluid
state in the original model thus corresponds to the magnetically ordered state in the xy-plane
in the effective model; e.g., the superfluid states at half (n = 0.5) and quarter (n = 0.25)
fillings correspond, respectively, to the magnetically ordered states in the xy-plane with total
magnetizations of m =

∑
i⟨Sz

i ⟩/N = 0 (with nonvanishing local moments) and m = 0.25. From
this mapping, we may argue that in 2D, where the system has strong quantum spin fluctuations
due to its low dimensionality, the superfluidity (and order parameter) is suppressed stronger
than in 3D, as is consistent with our calculated results shown in Fig. 2. This argument also
explains why the values of Φ obtained in VCA are smaller than the mean-field values neglecting
quantum fluctuations.

3.2. Pair coherence length
Let us then discuss the spatial extension of the Cooper pair. Here, we calculate the pair
coherence length ξ from the condensation amplitude F (k) calculated by the cluster perturbation
theory (CPT) [24]. The anomalous Green’s functions are calculated by CPT with the optimized
variational parameters, which are defined as

Fcpt(k, ω) =
1

Lc

Lc∑
i,j=1

Fij(k, ω)e
−ik·(ri−rj), (7)

and the condensation amplitude is given by

F (k) =

∮
C

dz

2πi
Fcpt(k, z), (8)

from which the pair coherence length ξ is given by [19, 25]

ξ2 =

∑
k |∇kF (k)|2∑
k |F (k)|2

. (9)
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Figure 3. Calculated pair coherence length ξ as a function of U/D at (a) half and (b) quarter
fillings. The insets show the tz dependence of ξ at U/D = 5.

In Fig. 3, we show the calculated result for ξ as a function of U/D at half and quarter fillings.
In the weak-coupling region, ξ is much larger than the lattice constant a. With increasing U , ξ
decreases smoothly to smaller values, and in the strong-coupling region, it becomes much smaller
than the lattice constant. Thus, a smooth crossover occurs from the weakly paired BCS-like
state (ξ ≫ a) to the tightly paired BEC state (ξ ≪ a). In the weak-coupling BCS region, ξ is
enhanced with increasing tz at half filling but is suppressed with increasing tz at quarter filling.
This behavior may be understood just as in the behavior of Φ, where the value of ρ(εF ) plays an
important role in the BCS region: i.e., ξ is suppressed (enhanced) with increasing (decreasing)
ρ(εF ). In the BEC region, on the other hand, the pairs are tightly bounded with increasing tz
both at half filling and at quarter filling. In the strong-coupling region, the quantum fluctuations
play an important role, which are suppressed in higher dimensions, just as in the behavior of Φ.
ξ is thus suppressed and the pairs are more tightly bound with increasing tz (or decreasing the
quantum fluctuations) as shown in the insets of Fig. 3.

4. Summary
Motivated by the experimental realization of the dimensional crossover of the superfluidity in
the ultracold fermionic systems, we have studied the superfluidity of the attractive Hubbard
model defined on the 2D square lattices stacked with the interplaner hopping parameter. Using
the method of VCA, we have calculated the order parameter and pair coherence length in the
parameter regions from the weak-coupling BCS to strong-coupling BEC states. We have shown
that in the weak-coupling BCS region the DOS at the Fermi level plays an important role in
the dimensional crossover of the superfluid state but in the strong-coupling BEC region the
quantum fluctuations depending on the dimensionality of the system play an essential role in its
dimensional crossover.
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