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Abstract.

Most of the rare-earth Nickelates (RNiO3; R= Nd, Pr, Sm etc.) exhibit a sharp metal-
insulator transition, from a high temperature paramagnetic metal to a low temperature
antiferromagnetic insulator. LaNiO3, the first member of the series, is the only exception
in the RNiO3 family, which remains metallic down to low temperatures. Using local density
approximation as an input to dynamical mean-field theory, we study the transport properties
of both LaNiO3 and NdNiO3, and show that LaNiO3 remains a correlated Fermi liquid with an
effective mass enhancement as the correlation increases upto the bandwidth. We also suggest
the possibility of pressure and strain-driven metal-insulator transition in both the Nickelate
compounds.

1. Introduction

Considerable experimental and theoretical knowhow has been brought to bear upon the problem
of rare-earth Nickelate series (RNiO3, R=La, Nd, Pr etc) over the past two decades to come to
grips with their unusual structural and electronic properties across the series. In the series
RNiO3, all the members except LaNiO3 are insulators at low temperatures [1, 2]. They
(R 6=La) undergo a sharp transition from a high temperature paramagnetic metal (PMM) to
a low temperature antiferromagnetic insulator (AFI) at characteristic temperatures TMI , which
increase with the radii of the rare earth atoms [3]. The magnetic and resistive transitions
are coupled in NdNiO3 and PrNiO3 (TMI=TN , the Neel temperature), whereas for the other
Nickelates, TMI > TN . While NdNiO3 is an antiferromagnetic insulator at low temperature,
LaNiO3 is the only exception in the series, remaining a paramagnetic metal down to lowest
temperatures measured, never undergoing a metal-insulator transition(MIT) [1, 2, 3]. The
reason behind the different ground states of two very similar compounds is still under active
investigation[4, 5]. Apart from the ground state properties, LaNiO3 differs from NdNiO3 from
the structural point of view also; while LaNiO3 is rhombohedral, NdNiO3 has an orthorhombic
structure. The MIT seen in Nickelates is structurally correlated with the crystal tolerance factor
tr which measures the deviation of the crystal structure from an ideal cubic one, and is given

by tr =
dR−O√
2dNi−O

.

While LaNiO3 has an ideal cubic structure with the largest bandwidth (W) among the 3d
transition metal Nickelates, others have smaller bandwidths due primarily to their distorted
structures [1]. As we move from La, Pr, Nd to Eu and Y, the radius of the rare-earth
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atom decreases, and the NiO6 octahedron tilts to accommodate the mismatch in the unit cell
parameters. The tilting is minimum, and hence the tolerance factor tr is maximum for the first
few Nickelates (La, Nd, Pr), indicating that the structural distortion has little effect on their
electronic properties. On the other hand, for the RE ions with smaller radii, the distortion is
maximum and plays a key role behind the MIT they undergo. We intend to provide a theoretical
account for the metallic ground state and transport properties of LaNiO3 using local density
approximation (LDA) as an input to a dynamical mean field theory (DMFT). We also comment
on the next member NdNiO3 and argue that the MIT there cannot only come from correlation,
the change in structure and charge order are essential to understand the MIT as the bandwidth
reduces.

2. Methods and formalism

The small structural distortion in both LaNiO3 and NdNiO3 (tr ≈ 0.97 and 0.94, respectively)
allows one to adopt a pseudo-cubic notation to study their electronic structures. An LCAO(linear
combination of atomic orbitals) band-structure calculation for the LDA density of states is
performed for LaNiO3, and a tight binding fit is obtained using Wannier90 for the two LDA
bands (e∗g) obtained from WIEN2K [6], that straddle the Fermi level (FL). In the cubic structure
the rare-earth atoms (R=La,Nd) sit at the corner, Ni atoms at the body-center, and the O atoms
at the face-center positions. In RNiO3 compounds, the nominal electronic configuration is Ni
d7, with fully filled triply degenerate t2g orbitals and quarter-filled 2-fold degenerate eg orbitals.
However, there is considerable controversy on the exact filling [7], values quoted ranging from
6.78 to 8.2 electrons in the 3d bands. Coming from a face-to-face overlap of two atomic orbitals,
σ bonds are the strongest covalent bonds, while π bonds are much weaker due to a side-by-side
overlap. This prompted consideration of only σ bonding [3, 5] between Ni 3d and its nearest
O 2p orbitals. Two Ni eg orbitals(dx2−y2 and d3z2−r2) and three O 2p orbitals (px,py, pz along
the respective axes) therefore constitute a 5x5 Hamiltonian which in turn gives five bands. Out
of these five, two e∗g antibonding bands formed out of hybridization between Ni 3d and O 2p
orbitals and degenerate along the Γ-R direction cross the Fermi level. Bandwidths for these
bands came out to be of the order of Coulomb energy (Udd) for the Nickelate series, implying a
moderately correlated situation.

An LCAO fit to the e∗g bands and the corresponding density of states (DOS) were obtained
using Wannier90 routine [6]. This LCAO DOS for the two e∗g bands were taken as the input
for our DMFT calculations using multi-orbital iterated perturbation theory (MO-IPT) as the
impurity solver. DMFT is considered to be one of the most accurate techniques to study
correlated systems, as it takes full account of the temporal fluctuations, while IPT, which uses
the second order term in the perturbative expansion in U, is already shown to produce very
good results at considerably less numerical cost. In the presence of a residual hybridization
between the two e∗g bands, the filling in each band is not conserved separately and the physics
is influenced by the inter-band exchange and spectral weight transfer over large energy ranges.
The paramagnetic phase of LaNiO3 is, therefore, well described by the two-band Hamiltonian

H = −
∑

<ij,µ,ν>,σ

tij,µ,ν(c
†
iσ,µcjσ,ν + h.c.) + U

∑
i,µ

ni↑,µni↓,µ + U ′
∑

i,µ,ν,µ6=ν

ni,µni,ν (1)

Here tij,µ,ν is the hopping between nearest neighbour sites i and j across the bands µ, ν, c†iσ,µ
(ciσ,µ) is the creation (annihilation) operator for an electron of spin σ in orbital µ (= 1, 2) at the
i-th site. These orbitals represent the two e∗g orbitals from LCAO fit and U, U′ are the on-site
intra- and inter-band Coulomb repulsions respectively. Typical values of correlation, used for
the entire d-band width in LaNiO3 is about 7 eV [7], little less than the total d-bandwidth. For
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only the e∗g part of the band, use of this value of U would be more than twice the e∗g bandwidth
and clearly unrealistic. An effective correlation U, of upto the same order of the e∗g bandwidth
is therefore reasonable. The LDA e∗g band DOS (Fig.1) shows that almost the entire weight of
the DOS is contained within a range of about 3 eV, which, would then be the upper limit for
the correlations appropriate for the calculations that follow.

The essential idea of DMFT is to replace the many-body lattice model by a single site impurity
problem, embedded in a bath, determined self-consistently [8]. This works exactly in infinite
dimensions, while being a local approximation in finite dimensions, it captures the temporal
fluctuations over a large scale very effectively. This is marked by the emergence of a low energy
coherence scale in the DMFT as correlation increases, a feature missed by almost all other
theories. The non-interacting DOS is the input of our DMFT calculations for the local retarded
Green’s function G(ω) = H[γ(ω)], where γ = ω + iη − Σ(ω) and H(z) is the Hilbert transform
of ρ0, given by

H(z) =

∫
dǫ

ρ0(ǫ)

z − ǫ
(2)

The self-consistency condition in DMFT demands that the lattice self-energy be same as the
impurity one and hence the self-energy is local. The one-electron Greens function(Ga(ω)) and
the associated self-energy(Σa(ω)) for any orbital a, are related to the bath propagator (Ga(ω))
via Dyson’s equation

G−1
a (ω) = G−1

a (ω) + Σa(ω) (3)

The self-energy Σa(ω) is calculated within MO-IPT and is given by

Σa(ω) =

∑
b AabΣ

(2)
ab

1−
∑

bBabΣ
(2)
ab

(4)

Σ
(2)
ab (ω) = 2

U2
ab

β2

∑
m,n

Ga(iωm)Gb(iωn)Gb(iωm + iωn − iω) (5)

Where Σ
(2)
ab (ω) is the second order contribution to the self-energy, Aab and Bab are the

necessary coefficients [9], a and b denote the two different orbitals, and iωm and iωn are the
Matsubara frequencies. From the imaginary frequency spectral function following the analytical
continuation: iωn → ω+iη, the Matsubara summation is then carried out. The bath propagator
is given by,

Ga(ω) =
1

ω + µa −△a(ω)
(6)

where△a(ω) is the dynamical Weiss field for orbital a[9]. From the imaginary part of self-energy,
the real part is calculated by the Kramers-Kroning transformation [8].

Transport properties can be calculated fairly accurately within the single band DMFT, owing
to the cancellation of vertex corrections in the corresponding Kubo formula. However, this does
not apply in the multi-band situation and one has to neglect the vertex corrections as they are
generally known to be small. However, being a convolution of two Green’s functions and from
two bands in this case, transport is a difficult calculation inherently. These results and their
consequences are discussed in detail elsewhere[10].
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3. Results and analysis

The spectral functions at different correlations U were calculated for LaNiO3 and are shown in
Fig.1: It is evident from Fig.1 that for upto the interaction strengths of U, U′ about 2.0 eV and
1.0 eV respectively, there is no real gap in the DOS at the Fermi level for LaNiO3 rendering
it metallic down to lowest temperatures. Both the bands have non-zero spectral weight at the
Fermi level. What is important is the transfer of spectral weight to high energies (upto 3 eV
and more). Although the transfer is not too much in terms of weight, the range is quite large
for the values of correlation we work with. The situation is very similar for NdNiO3 as well [10],
confirming the general assertion [1] that the lattice distortions and charge ordering play a crucial
role in the formation of the insulating state in NdNiO3.
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Figure 1. Evolution of density of states with energy for LaNiO3, as U increases. The red, blue,
cyan and black lines denote the lower e∗g band at different correlation U , while the green, pink,
yellow and orange lines are for the upper e∗g band. The spectral weight transfer and persistent
non-zero DOS at FL is notable.
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Figure 2. Optical conductivity σ(ω) as a function of ω (in eV) for (a)U=0.6 eV and (b)U=1.8
eV respectively. The red (continuous) and green (dashed) lines are for temperatures 30 and
300 K.The inset shows the recovery of spectral weight at low temperatures in the nearly divergent
Drude peak at very low energies.
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The real and imaginary parts of the self-energy were calculated for different values of U. While
Σ(ω) varies quadratically with ω close to FL [11] even for a moderate U, a typical signature of
the correlated metallic state, it becomes linear at higher frequency. No pole in ImΣ(ω → 0) is
observed in any band indicating the absence of orbital selective transitions here as well. The
correlated metallic state has a reasonable mass enhancement at the lower band, extracted from
the quasiparticle residue at the FL, of about 2 for U=2.0 eV and increasing with U, though
much lower than what is observed in the experiments.

Optical conductivity in both the systems LaNiO3 and NdNiO3 show very unique features
connected to Mott physics [12, 13]. The optical conductivity is calculated in the MO-DMFT and
we observe clear signature of correlation as shown in the changing sharpness of the Drude peaks
with change in temperature (Fig.2). From Fig. 2(main panel) it seems that the spectral weight
is transferred to the lower energy region with increase in temperature, while a careful study of
the optical conductivity spectra reveals that the weight is actually recovered in the vicinity of
zero energy region, as shown in the insets of Fig. 2. For the lower U value, the peaks appearing
near 1.7 eV and 3 eV are possibly due to the inter-band transitions, while the enhanced weight
of the 1.7 eV peak for the moderately strong correlation (U=1.8 eV) indicates the formation
of Hubbard sub-bands, and owes its origin to the inter Hubbard-band transitions. There is no
strong evidence of phonon in the infrared region of the optical conductivity spectra [12].

Thin films of both the systems, grown on different substrates, show quite interesting strain
dependence. While it is evident that strain certainly has effects on TMI , however, whether
the sign of strain really affects the nature of transition or not, is not clear. Several reports
dealing with the effect of strain on MIT of Nickelates seem to contradict each other and vary
widely. For example, in 30 uc LaNiO3 films, it appears, that both tensile and compressive strains
cause increased coherence [12]. Usually one would expect opposite behaviours in the two cases.
The effect of strain on TMI of Nickelates is actually not straight-forward, as strain can not
be decoupled from oxygen vacancy, which in turn changes the resistivity of the system under
consideration. In the context of our calculations, an increase (decrease) in t/U ratio is expected
with compressive (tensile) strain leading to an increase (decrease) of coherence.

In summary, we have calculated the spectral and transport properties of LaNiO3 using MO-
DMFT. Our calculations clearly reveal LaNiO3 as a Fermi liquid; albeit correlated, which never
undergoes a Mott transition. While LaNiO3 has the maximum bandwidth, and hence the
minimum U/W ratio, it increases as we move from La to Nd, Pr etc, thereby favouring the
insulating state over the metallic one eventually. However, without incorporating the structural
distortion and charge-ordering, we find [10] that NdNiO3 follows almost similar progression of
DOS and transport as shown for LaNiO3 above. It is, therefore, essential that one would have to
include these inputs (as well as magnetism) to model systems beyond LaNiO3 in the Nickelate
series.
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