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Abstract. The electric resistivity ρ(T ) under hydrostatic pressure up to 8 GPa was
measured above 2 K using a high-quality single crystal of the Yb-based heavy fermion
system β-YbAlB4. We found pressure-induced magnetic ordering above the critical
pressure Pc ≈ 2.4 GPa. This phase transition temperature TM is enhanced with
pressure and reaches 30 K at a pressure of 8 GPa, which is the highest transition
temperature for the Yb-based heavy fermion compounds. In contrast, the resistivity is
insensitive to pressure below Pc and exhibits the T -linear behavior in the temperature
range between 2 and 20 K. Our results indicate that quantum criticality for β-YbAlB4

is also located near Pc in addition to the ambient pressure.

1. Introduction

Quantum-critical phenomena in the Yb-based compounds have not been well explored

to date and thus have attracted great interest for possible novel quantum criticality

produced by different electronic configurations between the electron-like 4f1-Ce3+ and

hole-like 4f 13-Yb3+. As a prototype of quantum critical phenomena in the Yb-based

materials, non-Fermi-liquid of YbRh2Si2 has been well studied [1]. This material exhibits

field-tuned quantum criticality by suppressing the low Néel temperature TN (= 70 mK)

by magnetic field. However, except the recently discovered β-YbAlB4, the Yb-based

HF superconductivity has never been observed, neither at ambient conditions nor under

hydrostatic pressure.

The intermetallic compound β-YbAlB4 is the first Yb-based HF superconductor

with the transition temperature Tc (= 80 mK) and exhibits quantum criticality at zero

field [2, 3]. Hence, β-YbAlB4 is one of the best systems to study quantum critical

phenomena at ambient pressure[4]. For example, the temperature dependence of the

zero-field resistivity exhibits non-Fermi-liquid behavior, i.e., T -linear dependence from 4

K to 0.8 K; T 3/2 dependence from 0.8 K down to Tc [2, 3]. Moreover, in the temperature

range Tc < T < 2 K, the observation of divergent susceptibility χc ∝ T−1/2 under a low

field of 50 mT applied along the c-axis and − ln T dependence of the magnetic part of the

specific heat CM/T also strongly suggests that this material has unconventional QCP,

where standard theory based on spin density wave type instability is inapplicable. In
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addition, strong valence fluctuation was observed in β-YbAlB4 (Yb∼2.75+), in comparison

with other Yb-based QC materials such as YbCu5−xAlx (Yb∼2.95+) and YbRh2Si2
(Yb∼2.9+) [5, 6]. Hence, the valence fluctuations possibly play an important role in

understanding this unconventional quantum criticality in β-YbAlB4 and thus exotic

behavior may appear through controlling parameters such as pressure and chemical

doping.

A study of pressure as one of the control parameters may reveal the phase diagram

near QCP in both Ce-based and Yb-based HF systems. In the Yb-based compounds,

generally, 4f moments are known to become more localized with application of pressure.

Hence, with increasing pressure, a long-range magnetic order is expected to be stabilized

as observed in YbRh2Si2 and YbCo2Zn20 [7, 8], in sharp contrast with their Ce-

based counterparts. In the case of β-YbAlB4, it is highly interesting to see how the

unconventional zero-field quantum criticality observed at ambient pressure is associated

with a magnetic order expected to emerge under high pressure. We report here the

observation of pressure-induced magnetic order using high-quality single crystals β-

YbAlB4 and discuss pressure-tuned quantum phase transition.

2. Experimental details

Single crystals of β-YbAlB4 were grown by the aluminum self-flux method [9]. To obtain

high-quality single crystals, several crystals were selected using the residual resistivity

ratio RRR=ρab(300K)/ρab(0K). We spot-welded electrical contacts to the surface of

crystals using 20 µmϕ Au wires. The temperature dependence of the electrical resistivity

under various pressures up to 8 GPa was measured for the selected single crystals β-

YbAlB4 over RRR = 200 (residual resistivity ∼ 1 µΩ cm) in the temperature region

between 2 and 300 K using a cubic-anvil-type pressure cell. Hydrostatic pressure up to

8 GPa was applied using a pressure transmitting media, Daphne oil 7373 [10].

3. Results and discussion

Figure 1 displays the in-plane electrical resistivity ρab(T, p) of β-YbAlB4 (RRR=200) in

a pressure range of 0≤ p ≤ 8 GPa measured using the cubic anvil pressure cell with the

pressure medium of Daphne 7373. While the temperature dependence of the resistivity

ρab(T ) is almost independent of pressure up to 2.1 GPa, ρab(T ) starts showing a kink

above P= 2.4 GPa. The kink may well arise from a magnetic phase transition as the

gradual drop in the resistivity is normally associated with the loss of spin-disordered

scattering due to magnetic ordering. The kink temperature TM gradually increases with

the application of pressure and reaches 30 K under 8 GPa. The enhancement of TM

with pressure is expected in a magnetically ordered Yb Kondo lattice compound, as we

discussed above, and is in sharp contrast with the decrease in TM with pressure in Ce-

based compounds. The electrical resistivity at 300 K gradually increases with pressure,

forming a maximum value at 6 GPa and then decreases at P < 8 GPa. The temperature
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Figure 1. Pressure dependence of the in-plane resistivity ρab of β-YbAlB4 (RRR=200)
up to pressure of 8 GPa. The inset shows the resistivity over a wide temperature range
from 2 to 300 K under various pressures between 0 and 8 GPa. See text for details.

slope change of the resistivity ρab(T ) appears around 40 K corresponding to the peak

found in the Hall coefficient RH, and may well come from the formation of the coherent

state [11]. In particular, near this T range close to 40 K, a systematic change in ρ(T )

as a function of pressure was observed.

The sharper increase of the kink temperature observed near Pc ≈ 2.5 GPa indicates

that the magnetically ordered phase is not connected to the SC phase and is separated

from the quantum criticality observed for B=T=0 at ambient pressure [4, 12]. Almost

no change in resistivity is observed in the pressure rage between 0 and 2 GPa. However,

the magnetic transition of β-YbAlB4 was suddenly found at P >2 GPa. Significantly,

the phase transition of β-YbAlB4 reaches 30 K under 8 GPa. Such high magnetic

transition temperatures over 10 K has never been achieved in Yb-based HF materials,

e.g., YbInCu4 (TM=2.4 K at p=4 GPa [13]) , YbCu2Si2 (TM=10 K at p=10 GPa [14]),

YbRh2Si2 (TM=7 K at p=8 GPa [15]), and YbNi2Ge2 (TM=2 K at p=100 GPa [16]) .

Hence, the transition temperature of 30 K is the highest transition in the Yb-based HF

compounds. In addition, the transition temperature is as high as that for CeRu2Al10
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 showing significantly enhanced TN in Ce-based HF compounds [17].

4. Conclusion

A pressure-induced magnetic phase transition of β-YbAlB4 above Pc ≈ 2 GPa has been

observed by the electrical resistivity measurements. In the intermediate pressure region

0< P <2 GPa, the resistivity is almost pressure independent and no magnetic order

is found down to 2 K. Our resistivity measurements under pressure has revealed that

non-Fermi-liquid state arises nearby the critical pressure of the magnetism, suggesting a

magnetic quantum criticality near Pc = 2.4 GPa. Furthermore, the dramatic difference

in the phase diagram between those obtained by different pressure medium indicates

that the magnetic quantum phase transition may be the first order. Given the fact

that β-YbAlB4 exhibits the zero-field quantum criticality under ambient pressure [2, 3],

several scenarios are possible. (1) β-YbAlB4 may have the 1st-ordered phase transition

at Pc = 2.5 GPa such as a magnetic transition from a low moment magnetic state to

a high moment magnetic state, as seen in the low pressure side of YbRh2Si2 near 2

GPa [18, 19] or a valence transition with changes in Yb valence as seen at the high-

pressure side of YbRh2Si2 near 9 GPa [7]. (2) In the Ce-based HF superconductors, the

superconducting phase and quantum criticality are connected to the AF magnetically

ordered phase [20]. In β-YbAlB4, however, the SC phase and the ambient pressure

quantum criticality may be separated from the magnetically ordered state. It is highly

interesting to see if the non-Fermi liquid state at the ambient pressure forms a phase

reaching to the critical pressure of the magnetism as has been observed in MnSi [21].

(3) β-YbAlB4 may have two quantum critical regions at around ambient pressure and

at around Pc, which are separated by the Fermi liquid state.

In any case, a new type of phenomena in the Yb-based HF compounds is expected,

and thus we need to further investigate the pressure dependence for β-YbAlB4 at low

temperatures to uncover the ground state evolution from the non-Fermi-liquid state and

unconventional superconductivity to the magnetically ordered state under pressure.
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