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Abstract. The advantages of HMDS (hexamethyldisilazane) APT-plasma films for sensor 

applications were explored producing films in a three-turn copper coil APT equipment. HMDS 

was introduced into the argon plasma at four different conditions. Additional flux of oxygen 

could modulate the presence of organic components in the film, the composition varying from 

pure inorganic oxides to organo-silane polymers. Oxygen promoted deposition rates as high as 

900 nm/min on silicon, acrylic or piezoelectric quartz crystal substrates. Films with a clustered 

morphology and refractive index of 1.45 were obtained, mainly due to a silicon oxide structure. 

Raman spectroscopy and XPS data showed the presence of CHn and amorphous carbon in the 

inorganic matrix. The films were sensitive to the humidity of the air. The adsorptive 

capabilities of outstanding films were tested in a Quartz Crystal Microbalance (QCM). The 

results support that those films can be a useful and simple alternative for the development of 

sensors. 

1. Introduction 

It is well known that plasma processing can be used for a) surface modification, changing the surface 

wettability, adhesion, adsorption, printability, chemical reactivity, bio-compatibility, protection, 

sensitivity of light, etc. [1] or b) to deposit films of different kinds on a number of substrates. Those 

films are useful to develop microelectronic devices, as sensors and microTAS (micro Total Analysis 

System), because sensors require altering of small structures and the treatment of polymer surfaces is 

an important step in the manufacturing of many microTAS devices [2, 3]. 

Atmospheric plasma torch (APT) has high deposition rate of films and produces a range of film 

densities, being versatile compared with other available plasma equipment and processes. For 

instance, atmospheric plasma spray systems were used to develop NO2 sensors and negative 

temperature coefficient (NTC) devices by the insertion of particles in the plasma, resulting films with 

various porosities [4, 5]. Aerosols also could be introduced in the film during its formation, promoting 

a higher degree of retention of precursor’s molecular structure during the polymerization process. 

Problems associated with aerosols are high process pressure and the selection of the appropriate 

precursor which the particular partial pressure that assures high deposition rate without significant 

particle formation. Particle formation is a drawback on uniformity or, on the other hand, a strategy to 
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obtain composites. Thus, dense films to particles can be produced using a proper reactant and fine 

control of the plasma torch parameters. On such context, organosilicon compounds is a convenient 

precursor in APT processes because they avoid particle generation, being possible to obtain uniform 

films of high porosity [6]. 

Production of silica layers from organosilicon compounds is common, being common precursors 

HMDS (hexamethyldisilazane), HMDSO (hexamethyldisiloxane) [7] and TEOS (tetraethoxysilane) 

[8]. Nanoparticles of 160-200 nm were obtained with the introduction of HMDS aerosol, mainly 

components of particles being SiC4, Si–CH2–Si and Si–H [9]. As previously mentioned, a transparent 

HMDS derived film can be deposited on polycarbonate. The film composition presented few nitrogen 

(~0.3%) and C–H, N–H, Si–C, Si–N species [3]. Guruvenket et al, employing the same precursor, 

produced silicon carbonitride hard coatings [10]. Tendero et al summarizes the products from HMDS 

in APT processes as: a) stoichiometric SiO2 films (used to protect fibers); b) films made of Si-O with 

carbon impurities (resistant to base solutions); and c) pure silicon films [11]. 

Volatile organic compounds (VOCs) pollutants must be evaluated in environmental samples where 

they occur at low concentration in the presence of analytical interferences. Because of that, it is 

mandatory the pretreatment of the sample with retention step in some part of the microTAS device. In 

this situation, adsorptive thin films are very important in the development of sensors and/or microTAS 

for VOCs analysis. Former works presented hydrophobic HMDS polymerized films with good 

adhesion on several distinct substrates. Those films presented polar and non polar VOCs adsorptive 

properties [12, 13]. Nonetheless these films were not tested regarding water adsorption and their 

resistance toward VOCs exposure. 

The use of APT to deposit HMDS derivative films is a common procedure. Less usual is the use of 

this technique to obtain reproducible adsorptive films in a well controlled and well understood system. 

This work explores the advantage of the easiness of plasma polymerization of organic silicon 

compounds in a common process APT design resulting in reproducible adsorptive films for sensors 

and/or microTAS development in a comprehensive way.  

2. Experimental 

The produced APT equipment was designed to be used for deposition of thin films; therefore, some 

special characteristics should be provided in order to preserve monomer structure, such as low power, 

three coaxial tubes to allow easiness of reactant insertion on the inner section, etc. Thus, the thermal 

plasma is generated with argon gas under normal atmospheric pressure. The inductively coupled 

plasma torch consists of a three turns RF copper coil placed at the exit of the torch, around of small 

three concentric quartz tubes of 6, 14, and 18 mm diameters. Argon gas was injected with a flow of 1 

l/min through inner channel to compose the plasma core and second flux of 25 l/min in the outer 

channel so the required stabilizing tangential swirl at plasma edge. Because thermal plasma is difficult 

to be ionized it needs to apply a spark by Tesla coil to initiate the discharge. The efficiency of power 

coupling to the plasma torch is modest. Other requirements such as proper trimming of the cables 

within the matching box and installation of a low-pass filter with electrostatic shielding in order to 

reduce the reflected power were fulfilled. Many shootings of torch with plasma have been done. The 

adjustments at inductive torch coil with plasma resulted at 1420 V of voltage and 11.56 A of current 

amplitude with a good tuning at 23.47 MHz. The phase shift of 74 degree between voltage and current 

allowed the delivery of 1037 watts of power at coil. That indicated an enthalpy of 331 W power 

transferred into plasma. Figure 1a schematizes the admittance of the reactants. The carrier gas injects a 

controlled amount of the reactant HMDS into the plasma core through the inner channel. If cross flow 

is preferred, the reactant also can be injected through the outer side of torch. For this alternative, the 

use of air as carrier gas will favour the oxidation of HMDS molecule. If argon is used, the oxidation of 

HMDS molecule is not favoured. The experiments were carried out positioning the samples at 

different distances from the top of the glass torch. Figure 1b shows the plasma torch and a sample 

positioned over its top (inset). 
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Figure 1: a) schematics of 

reactants admission into 

the equipment; b) plasma 

torch and a substrate 

positioned to receive the 

film. 

 

Films were grown on four types of substrates: a) silicon wafers (used in the film’s chemical and 

physical characterization), b) piezoelectric quartz crystal (PQC – 7 MHz, for absorptive capability 

assessment), c) acrylic (PMMA) (samples used in the chemical resistance evaluation) and d) 

polyacrilonitrile (PAN) fibers (to verify if the film grows properly and with good adherence on this 

material). Deionised water and P. A. grade reactants were used, except HMDS (Fluka Chemie GmbH, 

Switzerland) that was industrial grade. 

For all tested substrates, Table 1 summarizes the four conditions used for the film growth and the 

resulting plasma characteristics. For each condition, 3 samples were prepared at distance of 2, 5 and 

10 mm from the torch top to substrate. Since the reactant is inserted on plasma zone by a saturated 

carrier gas, the HMDS flow was approximately 0.5 g/min for all films that were grown under the 

plasma conditions during 2 minutes. 
 

Table 1: Different conditions at APT during the growth of the HMDS films. 

Condition  

# 

HMDS injection Carrier gas Plasma characteristics 

Inner 

channel 

External 

channel 
Argon Air* 

HMDS molecules and plasma 

interactions 
Oxidation mechanisms 

1  x x  Low Low 

2 x  x  High Low 

3  x  x Low High 

4 x  x x High High 

* Air is admitted outside of the plasma torch via an external channel 
 

The deposition rate and refractive index were determined respectively by profilometry and 

ellipsometry at two wavelengths (632.8 nm and 830.0 nm). The presence of polar organic 

functionalities in the films was determined by infrared spectroscopy (FTIR). Raman microscopy was 

useful to obtain information about non polar organic residues and cluster formation. Additional 

chemical information came from XPS (x-ray photon electron spectroscopy). Film morphology was 

inspected by optical and scanning electron microscopy. Water contact angle measurements 

(goniometer and 4 µL drops) evaluated the hydrophobic character of the films. The PQC setup was 

described elsewhere [12]. Samples of different relative humidity and VOCs content were used 

sequentially in order to determine the adsorptive capability of the films. Chemical resistance to VOCs 

was tested by contact angle measurements with organic liquids. 

3. Results and Discussion 

Table 2 summarizes the main results obtained by ellipsometry and profilometry measurements. Due to 

the plasma torch characteristics the thickness is non uniform and some samples are porous; 

nonetheless, high deposition rates were achieved in all deposition conditions, the highest values 

correspond to a film with high porosity. Thick films presented numerous clusters and their roughness 

makes difficult a proper measurement by profilometry. HMDS admission on the inner channel 

increases ion/molecule reactions and, consequently, the thickness of the films. The high refractive 

index observed is characteristic of films with low oxygen content. This fact suggests a low oxygen 

presence in the reactive space even if oxygen is admitted in the system through an external channel 

(deposition #4). When air is the carrier gas (deposition #3) or a low concentration of HMDS is 

available during deposition (deposition #1), the film obtained will have high oxygen content with a 

refractive index similar to silica films (~1.45), these conditions also lead to low deposition rates. 

15th Latin American Workshop on Plasma Physics (LAWPP2014) IOP Publishing
Journal of Physics: Conference Series 591 (2015) 012041 doi:10.1088/1742-6596/591/1/012041

3



 

 

 

 

 

 

Table 2: Results from ellipsometry and profilometry measurements. 

Condition # Refractive index Max. thickness (nm) Characteristics 

1 1.3 to 1.4 100 Deposition rate lower than 100 nm/min 

2 ~2.0 9. 103 Rough and porous films, deposition rate of 1-5 103 nm/min 

3 1.3 to 1.4 540 Dense films, low deposition rate 

4 ~2.0 3. 103 Deposition rate up to ~1. 103 nm/min 
 

Infrared (FTIR) measurements support the main conclusions obtained by ellipsometry and 

profilometry measurements; Figure 2 shows typical FTIR spectra. Common features in all FTIR 

spectra indicate that the films presented the species commonly found in silicon oxide films and HMDS 

plasma polymerization films. The strongest band corresponds to SiOSi vibration in the 1000-1200   

cm
-1 

range. Other species were also found: SiCH3 (~1250 cm
-1

); CHn (~ 2950 cm
-1

); SiC (800 cm
-1

) 

and adsorbed water (3400 cm
-1

). Some samples prepared at a distance of 2 mm from plasma torch with 

condition #2 showed a weak peak at ~ 2100 cm
-1

, which corresponds to SiH. This is consistent with 

low quantity of oxygen and short residence time in the plasma, as discussed by Miettinen [14] in a 

study of silicon–carbon nanoceramics. 

The FTIR SiOSi peaks show different profiles depending on the condition of film growth and they 

were quite different of the profile obtained by Huang [3] for a film obtained by HMDS plasma 

polymerization. The Si-O-Si peaks present some resemblance with bands obtained for dense silica 

films formed from polymerization of TEOS and tetramethylcyclotetrasiloxane (TMCTS), among other 

precursors [15]. As pointed out by Cui, 1000−1200 cm
−1

 region is typical for a siloxane network, 

occurring overlapping of peaks at: a) 1075 cm
−1

 (vibration of “fully relaxed SiO2-network structure 

with bond angle of 144°”), b) 1100 cm
−1

 (corresponding to “larger angle Si−O−Si bonds”), c) 1150 

cm
−1

 (characteristic of “highly symmetric siloxane ring structure”) and an additional peak at 1050 cm
−1

 

“due to less symmetric and more random network structure” [15]. Thus, if HMDS is exposed to high 

plasma interaction (#2 deposition), the 1100 cm
-1

 band is privileged, probably owing to the high 

deposition rate that leads to disordered structure (Figure 2a) and more randomic configuration (Figure 

2b) can occur if less reactant is present. The presence of oxygen in the plasma favours a FTIR peak 

profile similar to SiO2, as it occurs in TEOS derived plasma films. These conditions induce losses of 

SiCH3 species, although some weak peak near 1250 cm
-1

 can remain (see Figure 2c), in a situation 

similar to Cui´s report for TMCTS, which attests the strength of such bond. Water adsorption in films 

can be enhanced by the presence of SiOH (~940 cm
-1

) species that promotes hydrogen bonds. 

Although Huang had observed such species in films made from HMDS in low temperature 

atmospheric plasmas [3], they were not noticed in FTIR spectra in the present study. Nonetheless, the 

water presence (broad peak at 3400 cm
-1

) is a good indicative of adsorptive properties of these films. 
 

   

Figure 2: FTIR spectra: (#2 deposition) with a) 5 mm or b) 10 mm from the torch and c) adding 

oxygen (#4 deposition)  
 

Raman microscopy can probe the small surface features that optical microscopy revealed. Raman 

microscopy is also capable of evaluating carbon-rich domains. Optical microscopy images show 

uniform films when weak HMDS-plasma species interaction are favoured (conditions #1 and #3 for 

the film deposition) as can be seen in Figure 3a. For these samples, weak peaks at ~1450 cm
-1

 that 

correspond to CH2 were found in the corresponding Raman spectrum. If strong interactions among 
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HMDS-plasma species are favoured, features can be observed in the film. If oxygen is absent in the 

plasma (condition #2), few graphitic domains will be observed (darker points in the centre of Figure 

3b). If oxidative plasma is formed (condition #4), the number and size of these graphitic domains 

increase (see Figure 3c). The frequency and intensity of features increase if the film is formed closer to 

torch, probably as a consequence of the higher deposition rate (Figure 3, Raman spectrum). 
 

 

 

Figure 3: Films formed at 

substrate-torch 2 mm apart. 

Optical microscopy of 

characteristic samples at 

conditions #1 (a), #2 (b) or 

#4 (c). Typical Raman 

spectrum of a film 

deposited at condition #4.  
 

Water contact angles were approximately 90º for all samples; organic liquids can wet these 

surfaces. Although these experiments pointed out to hydrophobic/organophilic species at surface, this 

interpretation could be inaccurate since it could also be due the roughness of the surface, as shown by 

SEM images, with particles approximately 1 µm long (Figure 4a). To avoid misleading, QCM 

measurements were performed to evaluate adsorptive properties. Samples were almost insensitive 

toward VOCs or water. However, samples with highest roughness (condition #4) gave intense 

response when exposed to a gas stream saturated in water as can be seen in Figure 4b. Probably the 

high porosity leads to a different phenomenon than adsorption inside the pores, such as clogging. 

Since these films were resistant to VOCs, they are grown on polymer substrate to test their 

performance as protective surface layer. Deposition on PMMA was performed without mechanical 

deformation of the 8-mm-thick substrate. The film was able to prevent acetone-PMMA interaction for 

few minutes but PMMA surface “cracks” (see detail, Figure 4c). An additional sample was prepared 

growing the HMDS derivative film in a mat of polymer fibres to test water adsorption in a three 

dimension system with increased surface area [16]. While PAN micro/nanofibers exposed to argon 

plasma can be severely destroyed in 15 s, the fibre mat that was protected by the HMDS derivative 

film showed low damage. After plasma process, a yellowish film that completely covers the fibres was 

obtained and can be seen in the Figure 4d. Films prepared at 2 and 10 mm apart from torch had very 

similar XPS spectra peaks, and they presented the same major components at similar concentrations: 

C: 22-25%, O: 47-44%, F: 1.6-1.5% and Si: 29%. They did not incorporate nitrogen as a film 

component and both had fluor, probably from a torch environmental contamination. 
 

 

 

 

Figure 4: (a) Water contact 

angle and SEM photo; (b) 

QCM of a film exposed to 

air saturated in water or 2-

propanol; (c) HMDS film 

on PMMA exposed to 

acetone and (c) in sequence 

from left: fibre on silicon 

substrate; after plasma 

treatment without HMDS 

film protection; PAN fibres 

mat after 15 s of HMDS 

derivative film deposition. 

All samples were 

approximately 20 mm long.  
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Moreover, these films presented a more defined granular morphology compared to sample prepared 

at 5 mm apart of the torch, which structure resembles a “sponge”. The last film had no fluor, was 

enriched in carbon species and impoverished in silicon oxide species when compared with its 

homologues. It incorporated a significant amount of nitrogen. Its composition was: C: 33%, O: 42%, 

N: 3% and Si: 22%. The XPS C1s peak was richer than previous films in carbonic species with 

oxygen and/or silicon (see arrow in the Figure 5). All of this suggests that it was formed at mild 

conditions in the plasma, with greater retention of the molecular structure of the precursor than its 

homologues films. The Si 2p peak centred at 102.9 eV vs. 103.2 eV of homologues films confirms this 

assumption. 
 

 

Figure 5 – C1s spectra for three HDMS 

films prepared at conditions #2 and 2 

mm (solid line), 5 mm (dashed line) and 

10 mm (dotted line) apart of plasma 

torch top. 

4. Conclusion:  

This work establishes the advantages of using HMDS derivative plasma films to construct sensors. If 

correct values for process parameters are chosen, it is possible to grow a film with a SiO2 network with 

organic residues as Si-CH3. The resulting film demonstrates to have excellent capability to absorb 

water or to protect polymer surfaces against VOCs attack. 
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