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Abstract. The results of the radial electric field measurements by Heavy Ion Beam Probe
(HIBP) in the TJ-II stellarator are compared with neoclassical transport computations. The role
played by several plasma features is identified by studying a reduced analytical transport model,
using both actual density and temperature profiles and representative model profiles for varying
density. Additional electric field calculations are carried out numerically with the Astra code
using three different expressions for the neoclassical transport coefficients in order to identify
the common features characterizing Er, particularly the sign reversal. For regimes with a wide
variation of collisionality, a general qualitative agreement between modeling and experimental
data is shown. The obtention of roots for Er depends critically upon the temperature and density
profiles as they determine the plasma collisional regime. It is found that the root transition
(i.e. Er sign reversal) occurs for a specific range of a collisionality parameter, consistent for all
models employed. It is found that when density and temperature profiles give real roots of the
electric field the pressure is almost constant. Discharges with high radial gradient of Er are
found to correlate well with high confinement regimes.

1. Introduction
In non-axisymmetric magnetic configurations like those of stellarators, the NC contribution is
crucial in the analysis of phenomena related to Er. Indeed, there have been joint efforts to
proceed to a benchmark of numerically obtained NC electric fields and fluxes with experimental
data in conditions suitable for a NC treatment [1]. In the particular case of the TJ-II device,
an acceptable agreement between experiments and Montecarlo calculations has been obtained
in low density regimes [2, 3]. Additionally, some works were dedicated to compare a particular
formulation of the NC fluxes to describe the electric fields with experiment in restricted plasma
conditions [4, 5].

Since the conditions and basic statements of NC theory are well grounded and provide a first
approximation to transport, it is desirable to have practical implementations that evaluate this
important contribution on transport and especially on the ambipolar radial electric field. The
present work is also benchmark-minded, but from a more immediate and practical perspective:
it is based on easy-to-implement formulations of the NC particle fluxes. The objective is to
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Figure 1. (a) Time signals of Electron Cyclotron Emission (ECE) from the magnetic axis
and from ρ = 0.6, line density n̄ through the magnetic axis and NBI heating during an NBI
discharge (TJ-II #15585) with continuous density rise. The ECE signals drop when the ECE
cut-off is reached at n̄ ≈ 1.2× 1019 m−3 but the plasma remains hot until the radiative collapse
at t ≈ 1160 ms. (b) Plasma potential profiles corresponding to the times indicated with the
arrows in (a).

provide a practical tool for the evaluation of the radial electric field under the assumptions
that (i) the main non-ambipolar radial fluxes are of neoclassical origin and (ii) the functional
dependencies of such fluxes for electrons and ions are enough to obtain Er even if the fluxes
themselves are not accurately described. If the results obtained from the NC formulations are
found to be consistent with the experimental results, this model should be suited as a tool
for the interpretation of experimental data, and also for predictive estimates. For this to be
trustworthy, not one but different formulations of the NC problem should yield consistent and
robust results with respect to the experimentally found trends of the radial electric field. We
believe that this is especially significant when the exercise is done with plasmas operated in a
complex magnetic geometry like that of a Heliac device, as the TJ-II is.

2. Experimental data
The TJ-II Heliac-type stellarator has a helical magnetic axis that winds around a circumference
of radius R0 = 1.5 m. The plasma has a bean-shaped cross section with average minor radius
of a ≈ 0.2 m and magnetic field at the axis B0 ≈ 1.0 T. The plasmas are always initiated
with Electron Cyclotron resonance Heating (ECH); absorbed heating powers are normally
PECH = (200 − 400) kW and in the absence of other heat sources the line averaged densities
are n = (0.3 − 1.0) × 1019 m−3 with central electron temperatures Te(0) ∼ 1 keV and ion
temperatures of Ti(0) ∼ 0.1 keV due to Coulomb heat exchange. Additional heating and fueling
can be obtained with the help of one or two neutral beam injectors (NBI) delivering port-through
powers PNBI = (300 − 600) kW each. Above line densities of around 1.2 × 1019 m−3 the ECH
is no longer effective and the plasmas are sustained with NBI heating alone up to densities
n = (2.0− 6.0)× 1019 m−3 with lower temperatures: Te(0) . 0.3 keV and Ti(0) ∼ 0.5Te(0).

The electron density and temperature profiles are measured using the Thomson Scattering
diagnostic from the magnetic axis up to ρ ≈ 0.7, where ρ is the normalized flux surface
label proportional to the enclosed plasma volume. In order to obtain the density profiles,
interferometry and reflectometry data are used to extend the profiles to the edge ensuring that
their line integral matches the experimental value. The ion temperature is normally measured
with the CX neutrals analyzer. Ti(ρ) is quite homogeneous in the low density ECH plasmas and
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thus very different from Te profiles due to the low collisional coupling in these cases. In what
follows, we use Ti based on the central values provided by the diagnostic. The plasma potential
in the bulk plasma is measured using the HIBP system described in [6].

Fig. 1(b) shows the plasma potential profiles φ(ρ) that correspond to the times indicated
by vertical arrows in figure 1(a). Two profiles are shown at each density value because the
diagnostic takes measurements at both sides of the magnetic axis (labelled ‘left’ and ‘right’).
This will be used as an indication of the uncertainty in the evaluation of the plasma potential.
During the ECH phase φ(0) is positive with values in the 400–1000 V range that depend on n̄.
At high enough densities still in the ECH phase, the plasma potential becomes negative near
the plasma edge and causes also the appearance of negative electric fields around the region of
maximum density gradient [7]. In discharge #15585 this happens during the mixed ECH+NBI
phase, when n̄ increases, Te decreases and Ti also experiences a small (∼ 20%) rise correlated
with the increased density. At still larger densities, like in the pure-NBI phase, φ(0) becomes
negative as in the rest of the plasma. When n̄ ≈ 2× 1019 m−3, the plasma potential is negative
everywhere reaching values between −300 and −600 V near the magnetic axis. It should be
noted that the change of sign of the plasma potential occurs in a rather continuous way starting
near the edge where Te ∼ 50 eV and moving towards the center as n increases.

According to figure 1, three different types of plasma have been considered that represent
different collisionality regimes and can be characterized by the corresponding average electron
density:

LDHT (low density with high electron temperature): Low density (∼ 0.6× 1019 m−3), high
electron temperature (Te(0) ∼ 1 keV) and low ion temperature (T0 ∼ 0.1 keV) as normally found
in ECH plasmas. This regime is characterized by long mean free paths (LMFP) of the particles
over most of the plasma, ν∗ � 1, giving rise to radial fluxes dominated by the contribution
of bouncing trapped particles in the large magnetic ripple. Here, ν∗ = ν/ωt is the collision
frequency normalized to a model transit frequency ωt = vth/(R0q) = ιvth/(2πR0), involving the
rotational transform in radians ι and the thermal speed vth. In this regime the electrons, being
much faster than the ions and having large magnetic moment due to the heating system (ECH),
dominate the radial fluxes causing Er to be positive and φ ∼ Te/e in the plasma core. The
plasma potential is then positive over the entire plasma column.

IDT (intermediate density and electron temperature): Intermediate densities (∼ 1019 m−3)
and electron temperatures (Te(0) ∼ 0.5 keV), typically found in mixed ECH +NBI plasmas,
or in high density ECH plasmas. The electron temperatures are lower than in the typical
ECH plasma, while Ti remains on the order of 0.1 keV. This regime is known from the first
TJ-II experimental campaigns for inverting the sign of the plasma potential (inferred from
floating potential measured with electric probes [8]), as well as the electric field (according to
spectroscopic measurements of plasma rotation [9]) somewhere inside the plasma. In particular,
Er starts becoming more negative near the plasma edge [7]. With increasing average densities,
the negative values of Er cover also smaller radii.

HDLT (high density and low electron temperature): High density (& 2 × 1019 m−3) and
low temperatures (Te(0) . 0.3 keV, Ti(0) . 0.14 keV), corresponding to NBI plasmas. When
the density is further increased from the IDT regime, the plasmas have closer electron and ion
temperatures and high density giving rise to shorter mean free paths for electrons and ions,
satisfying ν∗ . 1, ions being closer to one. The contribution from helically trapped particles is
now much smaller and the radial transport in these conditions is probably dominated by passing
and toroidally trapped particles over a large portion of the plasma column, which corresponds
to the “plateau” regime. The larger tendency of ions to escape the plasma causes Er < 0 in the
entire plasma column.

Figure 2 shows density (a) and electron temperature (b) profiles taken from the same
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(a) (b)

Figure 2. Averages of Thomson Scattering profiles at different line densities n̄ (1019 m−3)
taken from N sample discharges according to the n̄(N) sequence 0.5(6), 1.0(6), 1.5(3), 2.0(5),
2.7(1). Large error bars in Te(ρ > 0.8) at n̄ = 2.7 have not been drawn for clarity.

experimental day of discharge #15585 (Fig. 1) at fixed line densities within a 10% range, with
values (0.5, 1, 1.5, 2 and 2.5 in 1019 m−3 units). The profiles shown correspond to averages of
Thomson Scattering profiles based on N discharges, with N = (6, 6, 3, 5 and 1) respectively —
only one discharge was available for the highest density. Each individual profile is obtained after
fitting a short expansion (typically 4th or 5th order) of Bessel functions in order to obtain Te(ρ)
and ne(ρ) with reasonably smooth radial derivatives. Note that Thomson Scattering profiles are
obtained from 256 points in the TJ-II diagnostic that show a fine structure [10], while in the
present study we are only interested in the main macroscopic variations. The error bars in Fig. 2
are the standard deviation of the corresponding N profiles, except for the highest density case,
where the errors obtained from Bayesian analysis [11] are shown for the only available discharge.
Incidentally, this shows that these two errors are similar. The profiles and their radial derivatives
are then mapped to a same calculation grid [ρj ]. The ion density ni is slaved to ne through a
prescribed effective charge Zeff = 1.2.

Table 1. Constant values appearing in expressions (1) for different regimes of electron density
and temperature ((a) LDTH regime, (b) IDT regime, and (c) HDLT regime) obtained from the
fitting to an hyperbolic curve Te0 = 1/(0.9226 + 0.7623ne0). Densities are expressed in 1019m−3,
and electron and ion temperatures in KeV.

na n0 a b Tae T0e ae be Tai T0i ai bi

LDHT 0.11 ≤ 1 6.21 4.07 0.01 (0.65, 0.7) 1.9 1.66 0.01 0.077 40 10

IDT 0.08 (1, 2) 2.27 1.23 0.02 (0.45, 0.5) 2.91 1.64 0.01 0.09 35 10

IDT 0.09 (2, 3) 1.34 1.02 0.04 (0.35, 0.4) 6.64 5.43 0.01 0.09 35 10

IDT 0.11 (3, 4) 1.53 1.58 0.02 (0.3, 0.35) 5.23 2.12 0.01 0.09 35 10

HDLT 0.09 (4, 5) 4.78 5.11 0.02 (0.25, 0.3) 2.15 2.40 0.01 0.11 30 10

Finally, and since an algebraic model will be used later, we have prepared a set of analytic
profiles that reproduce the main features of the experimental ones shown in Fig. (2), having the
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form
n(ρ) = na + n0(1− ρa)b;Te(ρ) = Tae + T0e(1− ρae)be ;Ti(ρ) = Tai + T0i(1− ρai)bi , (1)

where na, Tae, and Tai are the electron density, electron temperature and ion temperature at
the boundary, while n0, T0e and T0i give the corresponding values at the center. Since the
corresponding central values of the experimental data shown in Fig. 2 can be well fitted by an
inverse relation, Te0 = 1/(0.9226 + 0.7623ne0) , as shown in Fig. 3(a), we have taken n0, T0e

to fall on this curve. The parameters a and b in Eq. 1 selected for our calculations are given
in Table 1. They produce the profiles shown in Figs. 3(b) and 4, where the model profiles are
compared with the experimental ones.
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Figure 3. (a) Measured central electron temperature as function of central density showing
hyperbolic- like dependence; (b) density profile: LDHT regime (solid line) and experimental
(empty triangles), IDT regime (dotted lines) and experimental (empty squares, filled and empty
circles), and HDLT regime (dash-dotted line) experimental (filled squares).
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Figure 4. (a) Electron temperature: LDHT regime (solid line) and experimental (empty
triangles), IDT regime (dotted lines) and experimental (empty squares, filled and empty
circles), and HDLT regime (dash-dotted line) experimental (filled squares); (b) Ion temperature:
LDHT regime (solid line) and experimental (empty triangles), IDT regime (dotted line) and
experimental (empty squares), and HDLT regime (dash-dotted line) experimental (filled circles).
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3. Neoclassical calculations of the radial electric field
The radial electric field in a stellarator can be computed from the neoclassical transport theory,
starting from the diffusive fluxes for ions and electrons, Γj (with j = e, i). These fluxes have
been calculated from kinetic theory or a two-fluid description to obtain closed forms in terms
of the plasma parameters by several authors [12, 13, 14, 15]. From the dependence Γj(Er) it is
possible to compute the radial electric field by applying the ambipolarity condition. Here we use
three different formulations of the neoclassical fluxes to obtain Er following certain procedures
that numerically integrate the analytical formulas. For the algebraic model described below, the
first procedure solves directly the ambipolarity equation

Γe(Er) = ZiΓi(Er). (2)

to determine Er (additional conditions may be necessary if multiple roots exist for Eq. 2 which
may produce a discontinuity of Er as function of the radial coordinate). The other procedure,
which is more convenient from the numerical point of view, follows the evolution of the electric
field solving the equation

∂Er
∂t
≈ |e|
ε⊥

(Γe − ZiΓi) (3)

until the steady state is reached, which gives Er. Here, ε⊥ is the perpendicular dielectric constant
and it is assumed that a term representing electric field diffusion is small [16]. Additionally, Er
is obtained from a simplified formulation due to Kovrizhnykh [17] which allows to follow an
algebraic procedure to compute the electric field. For this model, Er comes from the solution of
a cubic equation which follows from Eq. 2.

The models used in this work simplify the complicated magnetic geometry in stellarators
to obtain tractable NC transport fluxes, with the consequence that the resulting formulas do
not give a full account of them, but they can be used to calculate Er. No attempt is made to
match the observed radial transport since it usually has an important anomalous component,
particularly in regions far away from the plasma core. Since the non-ambipolar fluxes are mainly
neoclassical, we expect that the Er obtained from NC transport explain the measured values
reasonably well. The ability to reproduce the electric field should depend on the way the NC
fluxes react to this field, which is different in the various models considered.

3.1. Semi-analytical models for the neoclassical particle fluxes
Beidler’s model. The first model provides mono-energetic transport coefficients for an idealized
stellarator field with a single helical mode (see Eq. 4 below) obtained by Beidler [18, 19]
from fits to DKES calculations. This model smoothly connects the three collisionality regimes
that arise from the analytical theory of transport in a stellarator (ν,

√
ν and 1/ν), together

with the axisymmetric transport, which becomes dominant at large collision frequencies. The
monoenergetic transport coefficients have to be integrated over the thermal velocity distribution.

Kovrizhnykh’s model. A second model reported by Kovrizhnykh [20], expresses particle fluxes
as due to the contributions of an axisymmetric part ΓSj and an asymmetric one ΓAj (i.e. non-
axisymmetric) for both the electrons (j = e) and ions (j = i), Γj = ΓSj + ΓASj . The two
parts have expressions that depend on the collisionality regime and Kovryzhnikh has derived
interpolation formulas that are approximately valid for all the regimes. Formulas for the radial
fluxes, were given in terms of the thermodynamic forces and the magnetic helical ripple εh
entering the assumed representation for the standard stellarator magnetic field with a single
helical harmonic,

BT = B0(R0/R)[1− εh(r) cos(lθ −Mϕ)]; εh(r) = ε0Il(Mr/R0). (4)
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In these expressions, ε0 is a constant defining the amplitude of the stellarator field, related to
ι(0), and Il(x) is the modified Bessel function of the first kind

The particle fluxes are based on a derivation that correctly describes the ambipolar field
and the parallel (to B) plasma velocity [14], and are given by expressions interpolated over the
collisionality regimes for the symmetric and asymmetric components listed in [20].

Shaing’s model. There is a third model presented in [12, 13]. In these reports authors
argued that several values of the radial electric field can be possible that satisfy the ambipolar
equation, but some of them are unstable. Thus, to find a stable solution for Er from the
thermodynamic point of view, this field must be at the minimum of the generalized heat
production rate. Here, helical and toroidal ripples appear explicitly in the magnetic field taken
of the form B = B0 [1− εt cos θ − εh cos(lθ −mφ)], giving the asymmetric transport fluxes [13].
The symmetric part in this case is intrinsically ambipolar and is given by the usual expressions
for axisymmetric devices [15]. The electric field is obtained solving Eq. 2.

The magnetic geometry in the models is taken from typical equilibrium computations and
does not intend to capture the detailed geometry of the TJ-II device, but the main tendencies
of collisional transport should be preserved. Profiles for the rotational transform ι and ripple
amplitudes εt,h follow from those computations. For analytical uses the ripples are taken as

εt = αtρ
βt ; εh = αhρ

βh , (5)

where the parameters α′s, β′s can be chosen to fit experimental data to account partially for
geometrical effects. We will use αt = 0.095, βt = 0.55 [21], but αh and βh will be used as free
parameters to improve the fit of the Er profiles.

In all these models the radial electric field enters only the non toroidally symmetric part since
in a tokamak-like geometry steady state particle fluxes are ambipolar. The models are strictly
valid for steady state conditions since no time dependent terms due to polarization drifts are
included.

3.2. Algebraic formulation
Here we present an analytical model based on a reduced representation of Kovrizhnykh formulas,
which allows to find the roots of the ambipolar equation (2) in closed form for given plasma
profiles. The process followed is to give the model profiles of Eq. 1 for n(ρ), Te(ρ) and Ti(ρ),
compute the fluxes Γe and Γi and obtain Er from Eq. (2). This simplified analytical model [17]
assumes a simple magnetic geometry with a single helical harmonic. For the helical ripple we
have taken εh with the values given after Eq. 5. The NC fluxes used are more appropriate in
a low collisionality regime where the most important contribution to the transport coefficients
comes from particles locally trapped in the helical ripple wells.

It is assumed that axisymmetric and anomalous fluxes are ambipolar and then only the
asymmetric contribution is relevant: Γj = ΓASj . In a quasi-stationary state with external particle
sources Γext, the particle balance equation

Γj = Γext (6)

has to be solved together with the ambipolarity equation (2). But in our analytical approach,
only equation (2) is considered which gives an algebraic equation of third degree in the
dimensionless electric field V . This can be solved once the equilibrium profiles n(ρ) and Tj(ρ)
are given. However, not all profiles are physically possible, since the requirement of a single real
root for V = qiEr/Te for all radial positions limits the choice of values of the profile parameters.
This profile constriction can be understood, according to [17], in terms of the required particle
sources obtained from Eq. (6) for the set of profiles V (ρ), n(ρ) and Tj(ρ). When V is not real
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and continuous the sources are not physically acceptable and then the profiles are not possible.
The equation for the electric field V in steady state coming from Eq.(2) can be written as,

F (ρ, V ) = V 3 + b(ρ)V 2 + c(ρ)V + d(ρ) = 0. (7)

where the coefficients b(ρ), c(ρ), and d(ρ) are given in [17]
Depending on the values of the coefficients b(ρ), c(ρ), and d(ρ), equation (7) can have up to

three roots, V1(ρ), V2(ρ), V3(ρ). In general, two roots are stable and one is unstable, but they
have to be real in order to be acceptable. If the profiles are set arbitrarily, the solutions in
certain regimes can present a jump in the Er profile that corresponds to the transition from
one root to another. As pointed out by Kovrizhnykh [17], this requires particle sources of the
Dirac delta function type at the discontinuities, which is unphysical. Therefore, these solutions
should be discarded arguing that the corresponding Tj(ρ) and n(ρ) profiles cannot be obtained.
The profiles that have been verified to yield one real root solutions for Er all over the plasma
have central values of density and electron temperature that fall on the hyperbolic curve shown
in Fig. 3(a). This assures that the ambipolarity condition is satisfied at each magnetic surface.
The density and temperature profiles corresponding to the values given in Table 1, for each of
the regimes defined in § 2 satisfy this criterion and are shown in Figs. (3(b), 4(a), 4(b)).

4. Comparison with experimental data
4.1. Semi-analytical models.
Here we present the results for the three models described in Sec. 3.1. The NC particle fluxes
are obtained using the formulas for each model, and the radial electric field is obtained with
a numerical code coupled to the ASTRA transport shell [22] that starts with an initial Er,
normally Er(r) = 0, and evolves the equation (3) in every radial position rj until a steady state
is reached. When the experimental profiles of Fig. 2 are used the profiles obtained for the radial
electric field are shown in Fig. 5. They are computed for three representative densities using
each of the models, and the experimental electric field profiles are also shown for comparable
densities computed from HIBP data of the electric potential. The experimental Er-profiles can
be matched better using εh(ρ) as a “fitting function”. However, the purpose of this work does
not require finding a “best fit” but a reasonably good behavior.

Since the potential is the quantity actually measured by HIBP we focus on the physical
scalings of φ(ρ). The dependency with density is represented in a plot of the central potential
which is the most sensible to density. The results of the three models can be seen in Fig. 6 when
the experimental density and temperature profiles given in Fig. 2 are used. It shows that the
behavior of all of the models is quite similar. We recall that the parameter εh has been adjusted
to improve the fits in each model, thus allowing the good agreement among them. The values
for the analytical computations are also shown for comparison. The shadowed region in the
graph indicates the range of experimental values from HIBP and shows that the semi-analytical
models are able to reproduce the measurements to some extent. At intermediate densities the
agreement is good and a small departure is seen for low densities due to effects not included
in the NC model such as the presence of suprathermal electrons. The values of the density for
the potential sign change are almost the same for all models. Shaings’s model gives somewhat
smaller φ(0) values. It is worth mentioning that the smaller values of |Er| (and |φ|) found in
the HDLT case with the semi-analytical models coincides with the results found numerically
based on Montecarlo calculations, which also underestimate the magnitude of Er [1]. However
it is noteworthy that the saturation of |Er| seen at high density is well reporduced by all models
although the asymptotic value is model dependent.
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Figure 5. (a) Er profiles for the models of: (a) Kovrizhnykh, (b) Beidler and (c) Shaing
calculated for three experimental profiles from Fig. 2 for different line densities corresponding
to the LDHT (cyan lines, n = 0.48 × 1019m−3), IDT (black lines, n = 0.95) and HDLT (blue
lines, n = 2.45) regimes; experimental profiles for line densities in the same regimes are shown
with symbols and error bars.

4.2. Results of algebraic calculations.
The roots of Eq. (7) provide the radial electric field profile and the plasma potential profiles,
φ(ρ), are obtained from Er(ρ) after radial integration from the edge to the magnetic surface at
ρ, imposing the constraint φ(a) = 0. The results for the Er-profiles in each case are shown in
Fig. 7(a), while the plasma potential profiles are shown in Fig. 7(b) (cf. Fig. 1), where they
are compared with experimental results from each regime. It is seen that the same general
features obtained with the semi-analytical models are also reproduced, approximately matching
the experimental profiles, in particular, the sign change of Er in the IDT regime at some radial
position.

A common feature, already observed for TJ-II ECH plasmas [21], is that the plasma
parameters for which the electric field is inverted in passing from LDHT to HDLT plasmas
– the IDT regime discussed above – are found in the interval 0.5 < (n0/1019) < 2 in agreement
with the experiments, which corresponds to local collisionalities ν∗ ∼ 0.01. It should be stressed
then that the basic NC model, even for the complicated geometry of the TJ-II Heliac-type
stellarator, provides a reasonable first approximation for the main experimental results shown.
The correlation with experimental data shown in Fig. 7(b) indicates that the plasma potential
has dependencies related mainly with the plasma parameters and the peculiarities of transport.
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Figs. 3(b) and 4 going from LDHT to HDLT regimes; (b) φ profiles for the same model proflies,
showing also the experimental profiles from HIBP for three densities for comparison, marked
with symbols.

5. Discussion
In the light of the results obtained from our computations with the different approaches and
models and compared with the HIBP measurements, we can make an appraisal of the role of
NC transport regarding the radial electric fields. The main results of the comparison between
experimental measurements and theoretical modeling are captured in figures 5 and 6. Figure
5 shows that both, experimental and theoretical Er-profiles, approach to negative values as
the density increases from the lowest values; in particular, a dip in Er begins to develop near
the edge (ρ ∼ 0.8) when n rises, prior to becoming negative (also seen in Fig. 7). This is a
systematic behavior in TJ-II plasmas that we find well described by the models. However, on
the quantitative side, we find that the experimental data yield stronger fields than the models, in
particular for the extreme LDHT and HDLT cases. This is apparent in figure 6, for the central
potential: the crossing to negative values seems reasonably well represented by the models but
the high (low) potentials at low (high) density are in general underestimated. On this respect
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Figure 8. Collisionality profiles for the plasma profiles in Fig. 2 from discharge #15585, showing
the collisionality range where Er changes sign.

we must remember the simplifications of NC theory not accounted for in the models. In TJ-II,
there are significant populations of supra-thermal electrons in LDHT conditions [23, 24, 25].
Furthermore, a low density transition to better particle confinement has been identified with
the establishment of negative electric fields near the edge and the drastic drop of high energy
(> 20 keV) radiation from brehmsstrahlung [26]. Therefore, the presence of fast electrons and
ECH pump-out effects are likely candidates to explain why the plasma electric potential presents
higher φ(0) than the models, where these effects are not accounted for. In the case of the high
density plasmas, it seems also the case that NC calculations considering the magnetic geometry
in more detail yield lower electric fields than measured. It has been argued that this is due to
non-local effects related with large-width banana orbits for the ions in TJ-II plasmas [27, 28].
The fact might be more general according to a recent benchmarking effort between numerical
NC calculations and experimental data [1]. In general, then, the semi-analytical models behave
quite like their numerical counterparts based on Montecarlo or other techniques.

Comparing the Er profiles from the three models for experimental profiles we notice a general
agreement among them, with Beidler and Kovrizhnykh models giving quite similar results—and
reasonably close to the experimental data—and Shaing model yielding smaller values of the
electric field and plasma potential in the extreme density cases. This consistency among models
together with the fair comparison with the experiment indicates the robustness of the main
assumptions of NC transport, which is remarkable in the complicated geometry of the TJ-II
stellarator.

Once the models have been found acceptable to represent the radial electric field, we turn to
the interpretation of some general properties of TJ-II plasmas. The transition from the LDHT
regime to the IDT regime in TJ-II plasmas is characterized by a change in plasma rotation that
gives rise to an E × B-flow shearing layer near the edge; in particular, the rotation velocity
reverses where the electric field changes sign. We analyze this fact in terms of the plasma
collisionality. In Fig. 8 the collisionality profiles are plotted for the cases of experimental profiles
(Fig. (2)) from the LDHT to the HDLT regimes and as one can see they have different behavior;
near the center they are increasing with ρ for low n and decreasing for high n. However, the
radial position where the electric field changes sign, which is marked with the lines, always falls
within a limited collisionality range. This means that, for all profile types, when the collisionality
exceeds a certain value, trapped electrons become less important than circulating ions and there
is a transition from the electron to the ion root.

The agreement of the algebraic model with the rest of the models seen in Fig. 6 points again
to the robustness of the neoclassical particle fluxes in predicting the electric fields. There is also
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a qualitative agreement for the profiles as it is clear by comparing figures 7 and 5. Therefore, we
can use the neoclassical formulation to study in more detail the passage from the LDHT regime
to the IDT.

When a low density ECRH plasma in TJ-II evolves to a higher density via external gas
puffing, the plasma rotation starts changing sign near the edge but inside the plasma [7]. To
analyze this behavior, first we must note that, for a given Er, the electron and ion fluxes change
with collisionality at different rates. For low collisionalities Montecarlo calculations [29] show
that ∂νΓi > ∂νΓe, around the point where Γe = Γi. This implies that, when ν is slightly increased
(as when the density is increased by gas puffing) from its value for ambipolarity, Γi > Γe which
produces ∂tEr < 0, according to Eq. 3. The same relationship is satisfied for the fluxes with
the algebraic model. Hence, for low collisionality (when Er > 0), the electric field decreases
when the density is raised. However, we may ask why there should be some ρ < 1 where the
electric field drops faster and hits first the negative values. A typical observation is that the
collisionality in low density plasmas shows a maximum around ρ = 0.8−0.9 and we hypothesize
that this is related to the radius of the Er inversion.

This hypothesis seems to be supported by simulations of TJ-II discharge #15585 (see figure
1(a)), shown in figure 9 giving the profile evolution of (a) the radial electric field and (b) the
collisionality. For this simulation, ECE data have been used to build the evolving Te-profile,
while the density profiles have been constructed using a typical low density shape re-scaled to
give the known line density. The collisionality shows a maximum near ρ = 0.8, which is the radial
location where a dip in Er(ρ) develops and eventually becomes negative. Therefore, neoclassical
transport suggests that the Er inversion occurs at the maximum of collisionallity.

Figure 9. (a) Simulated evolution of a plasma from the LDHT to the IDL regimes where the
line density evolves as is in TJ-II discharge #15585 (see Fig. 1(a)). The evolution of the radial
electric field according to Kovrizhnykh semi-analytical model showing that it becomes zero at
ρ ≈ 0.7. (b) Corresponding collisionality has a maximum at the same position and increases
with time since density increases and the electron temperature decreases.

It is interesting to analyze the equilibrium point for Er = 0 from the point of view of rotation
dynamics. In [30] it is shown that the transition from the electron to the ion root occurs in a
poloidal rotation shear layer, where Er can be obtained from a diffusion equation which may
be interpreted as a balance between the non-ambipolar flux e(ZiΓi − Γe) and a viscous particle
flux, driven by a poloidal viscous force,

Γvis ≡
2
r2

d

dr

[
r2η̂

(
E′r −

1
r
Er

)]
− ∂η̂

∂Er

(
E′r −

1
r
Er

)2

= e(ZiΓi − Γe), (8)
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where η̂ is a viscosity coefficient. From here, we see that an ambipolar equilibrium (e(ZiΓi = Γe))
can be reached at a point with ρ < 1 for vanishing Er, when the Er(ρ) profile has a minimum
(i.e. E′r = 0) there, as in the left panel of Fig. 9. In that case Γvis = 0, which means that the
viscous stress vanishes at the point where the poloidal rotation starts to change direction. This
is in agreement with what was found in Ref.[31].

Finally, we turn to the problem of the formation of transport barriers in non-axisymmetric
devices from the neoclassical viewpoint. In such devices the L-H transition happens at different
rates, possibly due to the fact that the transport barriers can develop inside the plasma (instead
of right at the plasma edge, as is normally the case in tokamaks) where neoclassical fluxes
are not negligible in comparison with their anomalous counterpart. Assuming the paradigm of
turbulence quenching due to the establishment of sheared electric drifts, it is in order asking
whether the neoclassical electric field can provide a positive feedback loop for the establishment
of a robust transport barrier. In other words: will the neoclassical Er respond to the increasing
gradients developing a stronger shearing rate in the E × B flows? This would give a positive
feedback mechanism of the kind studied, e.g., in ref. [32], where the increasing pressure gradient
intensifies the shearing rate that, in turn, eases a further increment of the pressure gradient.
The models used in this paper provide such positive feedback indeed.

6. Conclusions
The results of calculations of the Er field from the framework of neoclassical transport theory
have been compared with experimental measurements of the plasma potential obtained with
HIBP diagnostics in the TJ-II stellarator. Different collisionality regimes were analyzed with
several theoretical models which in general terms yield Er profiles in agreement with the
experiment, indicating that neoclassical theory is a reasonable description for non-ambipolar
fluxes [16]. However, the absolute values of the NC fluxes are smaller than the actual ones.
From experimental observations, we can define three characteristic intervals for density and
electron temperature. From the comparison of analytical results with results obtained from
the three described models for the neoclassical fluxes, it can be noted that Kovrizhnykh and
Beidler models are more adequate to model the non-axisymmetric NC transport in TJ-II plasmas
(6), in the sense that solutions to the ambipolar equation (2) are closer to the experimental
measurements and to those of the analytical model, which is entirely based on asymmetric NC
transport. The qualitative agreement with experimental Er profiles is remarkable considering
that, for this model a simple magnetic geometry with a single helical harmonic (4), was assumed,
with a simplified representation of helical ripple that is varied to improve the fits (Eq. 5). In
the case of Beidler model, in a low collisionality regime we note it yields larger values than the
other semi-analytical models (notice that the analytical fits of NC fluxes to the numerical DKES
results, used in this model, deviate from them for small collision frequencies [18]).

Multiple solutions of the electric field that satisfy the ambipolar constraint (2) often arise
when particle fluxes have a nonlinear dependence on electric field. This problem can be solved
when the constants involved in density and temperature profiles are chosen to satisfy two criteria:
the existence of a stable plasma equilibrium P = neTe ≈ const over different density regimes,
and the existence of a single real solution for the ambipolar equation (enforcing ambipolarity
on each flux surface) [33]. The roots of Er depend upon the plasma profiles for density and the
two temperatures, thus allowing to conclude that the jumps between roots at two neighboring
radii at steady-state, can be controlled by the plasma parameter profiles.

For the case LDHT we confirm the fact that with centrally peaked temperature profiles, a
large positive “electron root” radial electric field is observed. In some cases, it can lead to
the formation of an internal transport barrier which has been collectivelly named core electron
root confinement (CERC); the large Er has the effect of reducing the neoclassical transport by
driving both plasma species out of the high-loss “1/ν∗” regime[33]. In the case of HDLT, we also
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obtain that the electric field becomes more negative near the plasma edge as was reported in
other stellarators, with NBI heating. In general, the magnitude of the calculated Er is smaller
than HIBP measurements. Possible reasons are the presence of suprathermal particles since
they would enhance the electric field, and non-local effects not accounted for in the theoretical
models [34].

An important result is that the transition from the electron to the ion root is found to occur
for a certain narrow range of collisionality which points to a threshold collisionality as the cause
for the transition. The implication of this is that a right amount of collisions, which destroy the
trapped particle orbits that produce large electron losses, is responsible for the appearance of
the ion root. The determination of the change in the radial electric field sign as a function of
collisions (see Fig. 8) could have a strong influence in the transport barrier formation [35].

The good performance of the analytical NC model in predicting Er was exploited to explain
the observation that Er gets zero inside the plasma edge in going to from LDHT to IDT regimes.
It was shown that this occurs where the collision frequency profile has a maximum. The
maximum in turn would produce an accelerated reduction of Er in a given low collisionality
range. The NC model also provides support to the idea that an improved confinement mode
can be maintained by the increased sheared E ×B flows.
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