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Abstract. The Double Folding Cluster Model Potential is constructed using the α - cluster
structure of nuclei. It can be derived by folding an α− α interaction with density distributions
of α - clusters inside the projectile and target nuclei. This potential has been successfully tested
on elastic scattering data of some selected nuclei. In this work, we are interested to investigate
the implications of this potential on astrophysical aspects.

1. Introduction
Challenges in determining the accurate nuclear potential motivate the effort in developing various
potentials. The most widely used potential is the Woods-Saxon shaped potential given by [1]

VN (r) =
−V0

1 + exp[(r −R0)/a0]
+ i

−W0

1 + exp[(r −RW )/aW ]
(1)

where the radii R0 = r0(A
1/3
P + A

1/3
T ) and RW = rW (A

1/3
P + A

1/3
T ) for the nuclear interaction

between a projectile and target nuclei with the mass number AP and AT respectively, within
their distance of closest approach, r. The Akyüz-Winther (A-W) parameterization [1] is often
used to determine the parameter for the real part, i.e. the surface diffuseness parameter, a0,
the potential depth, V0 and the radius parameter, r0. The double folding potential has become
one of the popular microscopic models to calculate the real part of the optical potential. Apart
from that, there is also the Double Folding Cluster (DFC) model potential which is based on
the α − α interaction folded with the density distributions of α - clusters inside the projectile
and target nuclei introduced by Azab et al. [2]. For this potential, the nuclei are assumed to be
composed of an integer number m of α particles, i.e., A = 4m.

Several studies have shown that the DFC potential has successfully reproduced the differential
cross-section of elastic scattering data for a few reactions [2, 3, 4, 5]. Meanwhile, this potential
could describe the broad features of the fusion, S-factor and elastic-scattering angular data
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simultaneously as reported by Kocak et al. [6]. Based on these reports, we are interested
to further the study on this type of potential on the 12C+12C, 12C+16O and 16O+16O
reactions. Since these three reactions are important in stellar evolution and nucleosynthesis,
this investigation emphasizes on the effects of this potential on astrophysical aspects.

2. Calculation
We present here a short description of the main formula used to calculate the DFC model
potential while the detailed description can be found in Azab et al [2]. The DFC can be
formulated as an effective α − α interaction, υαα folded with the α - cluster distributions ρcP
and ρcT for the projectile and target nuclei respectively

VDFC(r⃗) =

∫ ∫
ρcP (r⃗P )ρcT (r⃗T )υαα(s⃗)dr⃗Tdr⃗P . (2)

The vector s⃗ = |R⃗+ r⃗T − r⃗P | while the α−α potential given by υαα = −122.6225 exp(−0.22r2)
is taken from Buck et al. [7].

If ρc is the α - cluster distribution function inside the nucleus, then the nuclear matter density
distribution function of the nucleus, ρM can be related to that of the α-particle nucleus, ρα as

ρM (r⃗) =

∫
ρc(r⃗′)ρα(|r⃗ − r⃗′|)dr⃗′. (3)

The matter density distribution of both projectile and target nuclei which can be written in a
modified form of the Gaussion shape and the corresponding α density is given by [2]

ρM (r⃗) = ρ0M (1 + ωr2) exp(−βr2) (4)

ρα(r⃗) = ρ0α exp(−λr2). (5)

From Eq.(4) and Eq.(5), the α-cluster distribution function ρc can be obtained by using the
Fourier transform [8], on Eq.(3) as

ρc(r⃗′) = ρ0c(1 + µr′2) exp(−ξr′2) (6)

where

η = λ− β, ξ = βλ/η, µ =
2ωλ2

η(2η − 3ω)
(7)

while ρ0M , ρ0α and ρ0c can be obtained from the normalization condition. The parameters used
in this work for all nuclei involved are given in Table 1.

Table 1: The nuclear density parameters.

Nucleus ω β(λ) ⟨r2⟩1/2 Ref.
(fm−2) (fm−2) (fm)

4He 0 0.7024 1.461 [8]
12C 0.4988 0.3741 2.407 [9]
16O 0.6457 0.3228 2.640 [9]

The DFC potential is then used to replace the real part in the nuclear potential,VN (r) to
calculate the fusion cross section

VN (r) = NRVDFC(M)(r) + i
−W0

1 + exp[(r −RW )/aW ]
(8)
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with NR is the normalization constant that can be varied to fit the experimental data. The
value W0 = 50 MeV, rW = 1.0 fm, and aW = 0.4 fm are chosen for the imaginary potential
parameters to make sure that any differences arise only from the real part of the potential. We
only consider the average description of the data by neglecting the resonant oscillation since the
main purpose of this work is not to investigate the fusion oscillation especially in the 12C+ 12C
and 12C+ 16O reactions.

3. Results
The fusion cross sections for 12C+12C, 12C+16O and 16O+16O reactions have been calculated
using the DFC potential. The normalization constant can be adjusted to obtain the best fitting
by minimizing the chi-square of the fitting. The results are compared to the A-W potential and
tabulated in Table 2. The results show that the DFC potential could produce a fitting as good
as the A-W potential or even better.

Table 2: The normalization constant, NR and the value of chi-square χ2 of the fitting for A-W
and DFC potentials.

Reaction Potential NR χ2

12C+ 12C A-W - 54.17
DFC 1.00 42.83

1.17 59.41

12C+ 16O A-W - 2.03
DFC 1.00 2.52

1.09 2.00

16O+ 16O A-W - 1.63
DFC 1.00 6.98

1.35 1.42

The modified astrophysical S-factor can be defined as S∗(E) = σ(E)E exp(2πη − gE) where
2πη = 0.9896Z1Z2(µ/E)1/2 and g = 0.46MeV−1 [10]. The S∗(E) with σ(E) from the DFC
potential is compared to the one calculated using A-W potential and depicted in Fig. 1 for
12C+12C reaction. The fusion cross section obtained in this calculation is then used to calculate
the thermonuclear reaction rates using the standard formalism [10]

⟨σν⟩ =
(

8

πµ

)1/2 1

(kT )3/2

∫ ∞

0
σ(E)E exp

(
− E

kT

)
dE. (9)

The ratio of the reaction rates obtained from this work to the rates from Caughlan and Fowler’s
compilation 1988 (CF88) [11] is then calculated and depicted in Fig. 2. It is shown that
the reaction rates obtained from the DFC potential seems lower than the CF88 at very low
temperature.

The temperature that is typical of core carbon burning govern by the 12C+12C reaction is
within the location of the Gamow peak which is T ≈ 0.85 GK. For the oxygen burning where
the 16O+16O fusion reaction occurs, the typical temperature is in the range of T = 1.5 − 2.7
GK, depending on the stellar mass. Although the rates predicted from the DFC potential give
large differences at very low temperature, the ratio of the rates is approaching unity at least in
the range of the Gamow temperature where the reactions mostly occur.
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Figure 1: The S∗(E) calculated using σ(E)
from the DFC potential and the A-W
potential for 12C+12C reaction. Experimental
data are from [12].
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Figure 2: The ratio of the reaction rates
calculated using the DFC potential to the
CF88 rates for 12C+12C, 12C+16O and
16O+16O reactions.

4. Conclusion
The DFC potential can be an alternative potential since it could reproduce the experimental
fusion cross section data very well. However, the prediction on the astrophysical aspects gives
some significant differences. Hence, further investigation on this potential is required.
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