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Abstract. We analyze fusion hindrance phenomena involving heavy nuclei using the
microscopic time-dependent Hartree-Fock theory combining with a macroscopic equation of
motion with a friction term. We find that a barrier structure disappears in the obtained
potentials in heavy systems. We show that main contribution to extra-push energy comes
from the increase in dynamical potential.

1. Introduction
Fusion hindrance has been known by observations that fusion reaction at energies around the
Coulomb barrier in heavy systems is strongly hindered compared with that in light- and medium-
mass systems [1, 2, 3]. This fusion hindrance partially results in extremely low cross sections
of the synthesis of superheavy elements. Before these observations, it was pointed out in Ref.
[4, 5] that an extra energy (extra-push energy) is needed to fuse in heavy systems whose so-
called effective fissility parameters are greater than a certain value, which can approximately
correspond to the charge product of projectile and target nuclei being greater than 1600 ∼ 1800.
In such heavy systems, quasi-fission (reseparation without forming a compound nucleus after two
nuclei touch) is a dominant process and this can be understood by a geometrical consideration
of potential energy landscape. For heavy systems, a conditional saddle point on the potential
energy landscape appears inside the touching configuration of two nuclei. Therefore, the system
needs to overcome the saddle for fusion. Otherwise, the system will reseparate, leading to
quasi-fission. Friction leading to energy dissipation from relative motion to internal excitations
becomes strong inside the touching configuration because of large overlap of two nuclei.

Previously, the quasi-fission process has been analyzed by a macroscopic dynamical model
based on a Langevin equation [6, 7]. Analysis by microscopic reaction theory such as time-
dependent Hartree-Fock (TDHF) theory [8, 9, 10, 11] is only a few [11, 12]. The aim of this
work is to understand the origin of the fusion hindrance by using a microscopic reaction model,
especially focusing on the properties of nucleus–nucleus potential and energy dissipation. In
this work, we employ a method of combining the TDHF theory with a macroscopic equation of
motion for directly extracting nucleus–nucleus potential and energy dissipation [13, 14].

2. Method
The TDHF theory gives a microscopic self-consistent description through the energy density
functional for both static and dynamical properties, which can be applied to nuclei over the
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whole nuclear chart. The basic equation for describing time evolution of the dynamics is the
so-called TDHF equation for single-particle wave functions φi(r, t),

ih̄
∂

∂t
φi(r, t) = ĥ[ρ̂]φi(r, t), (1)

where ĥ[ρ̂] denotes single-particle Hamiltonian as a functional of one-body density ρ̂.
To extract nucleus–nucleus potential and energy dissipation from TDHF evolutions, we use a

method of combining microscopic TDHF and macroscopic evolution through a Newton equation,
which we proposed in Ref. [13, 14]. This method relies on the assumption that a complicated
microscopic mean-field dynamics can be reduced to a one-dimensional macroscopic equation of
motion for relative distance R and conjugate momentum P including a friction term,

dR

dt
=

P

µ
,

dP

dt
= −dV

dR
− d

dR

(
P 2

2µ

)
− γ

dR

dt
, (2)

where µ, V and γ denote the reduced mass, nucleus-nucleus potential and friction coefficient,
respectively, as a function of relative distance. The friction term describes dissipation from the
relative motion to intrinsic degrees of freedom. We would like to note here that our extracted
potential is based on neither sudden nor adiabatic approximation. Our extracted potential
and friction automatically contain dynamical effects such as dynamical density evolution. We
stop the extraction when the overlap of the projectile and target densities becomes significantly
large since our extraction method based on the two-body analysis does not properly work with
such a large overlap. To compute TDHF evolutions, we use the three-dimensional TDHF code
developed by P. Bonche and coworkers [15]. Details of the computations are in Refs. [13, 14].

3. Result
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Figure 1. Nucleus–nucleus potential
as a function of relative distance for
the 96Zr+ 132Sn system. The lines are
the results of our method at different
Ecm indicated in the figure. The dots
are obtained from the frozen density
approximation.

First, we show extracted nucleus–nucleus potentials. Figure 1 shows potentials extracted at
different center-of-mass energies Ecm for the 96Zr+ 132Sn system. As a reference, we plot by
the filled circles the frozen density potential that is calculated from the same energy density
functionals as in TDHF with the projectile and target densities frozen to their ground-state
one. Comparing with the frozen density potential, we find an increase in extracted potential
at all the energies used here at R < 13 fm. In Fig. 2, we investigate in detail the property
of extracted potentials for the 96Zr+ 124Sn system by comparing with those in the 40Ca+ 40Ca
system. We find two significant differences: (1) For the 96Zr+ 124,132Sn systems, no potential
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Figure 2. Left panel: Zoom around the frozen density barrier for nucleus–nucleus potentials
extracted for the 96Zr+ 124Sn system. Right panel: Same as in the left panel but for the
40Ca+ 40Ca system.
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Figure 3. Dissipated energy calculated
in Eq. (3) for the 96Zr+ 132Sn system.
The lines are the results of our method at
different Ecm indicated in the panel

barrier is observed in the potentials extracted at any Ecm and the potentials monotonically
increase as R decreases. For the 40Ca+ 40Ca system, a barrier is observed as usual. (2) Energy
dependence of potential appears in the 40Ca+ 40Ca system, while it is not significant in the
96Zr+ 124,132Sn systems around the frozen density barrier at R ∼ 12.8 fm.

In Fig. 3, we show dissipated energy for the 96Zr+ 132Sn system. We calculate the dissipated
energy through the friction coefficient by

Ediss[R(t)] =

∫ t

0
dt′γ[R(t′)]

(
dR

dt

)2

, (3)

at time t when we stop the extraction of the friction coefficient. In all the cases, the dissipated
energy monotonically increases as nuclei approach to each other.

Finally, we analyze the origin of the fusion hindrance. We first define the extra-push energy
Eextra of TDHF as the difference between the fusion threshold energy Ethres and the frozen
density potential barrier VFD, Eextra = Ethres − VFD. The fusion threshold energy is determined
as the lowest energy for a reaction with the system remaining a compact shape for a sufficiently
long time (∼ 1200 fm/c) after touching. For the analysis of the extra-push energy, we extract
potential and energy dissipation from TDHF trajectories at Ethres, in which remaining kinetic
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Figure 4. Left panel: Extra-push energies extracted from our TDHF method (solid circles)
and from experimental data (triangle) [2] for the 96Zr+ 124,132Sn, 136Xe systems. Right panel:
increase in potential and dissipated energy extracted from our TDHF method.

energy is smallest at the relative distance where we stop extracting potential. At this relative
distance, denoted by Rstop, we can identify the extra-push energy as the sum of the dissipated
energy Ediss(Rstop) in Eq. (3) and the increase in potential ∆V at Rstop from the frozen density
potential barrier, ∆V = V (Rstop)− VFD. The results are summarized in Fig. 4. It is clear that
the contribution from the increase in potential ∆V is larger than the dissipated energy Ediss for
the 96Zr+ 124,132Sn, 136Xe systems. From this finding, we conclude by our microscopic analysis
that main contribution to the extra-push energy is from the dynamical increase in potential.

4. Summary
We have discussed the origin of the fusion hindrance by using microscopic TDHF combining
with a macroscopic equation of motion for extracting dynamical nucleus–nucleus potential and
energy dissipation. Dynamical increase in potentials extracted in heavy systems appears, which
is different from that in light- and medium-mass systems. We analyze extra-push energies and
find that main contribution to the extra-push energy is from the dynamical increase in potential.

Acknowledgments
The author is supported by the Special Postdoctoral Researcher Program of RIKEN.

References
[1] Gaggeler H et al. 1984 Z. Phys. A 316 291
[2] Sahm C C et al. 1985 Nucl. Phys. A 441 316
[3] Schmidt K H and Morawek W 1991 Rep. Prog. Phys. 54 949
[4] Swiatecki W J 1981 Phys. Scripta 24 113; 1982 Nucl. Phys. A 376 275
[5] Bjornholm S and Swiatecki W J 1982 Nucl. Phys. A 391 471
[6] Zagrebaev V and Greiner W 2005 J. Phys. G 31 825
[7] Aritomo Y, Hagino K, Nishio K and Chiba S 2012 Phys. Rev. C 85 044614
[8] Bonche P, Koonin S E and Negele J W 1976 Phys. Rev. C 13 1226
[9] Flocard H, Koonin S E and Weiss M S 1978 Phys. Rev. C 17 1682

[10] Negele J W 1982 Rev. Mod. Phys. 54 913
[11] Simenel C 2012 Eur. Phys. J. A 48 152
[12] Guo L and Nakatsukasa T 2012 EPJ Web Conf. 38 09003
[13] Washiyama K and Lacroix D 2008 Phys. Rev. C 78 024610
[14] Washiyama K, Lacroix D and Ayik S 2009 Phys. Rev. C 79 024609
[15] Kim K H, Otsuka T and Bonche P 1997 J. Phys. G 23 1267

NUBA Conference Series - 1: Nuclear Physics and Astrophysics IOP Publishing
Journal of Physics: Conference Series 590 (2015) 012034 doi:10.1088/1742-6596/590/1/012034

4


