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Abstract. Despite its importance, uncertainty is often neglected by practitioners in the design
of system even in safety critical applications. Thus, problems arising from uncertainty may
only be identified late in the design process and thus lead to additional costs. Although there
exists numerous tools to support uncertainty calculation, reasons for limited usage in early
design phases may be low awareness of the existence of the tools and insufficient training in the
practical application. We present a teaching philosophy that addresses uncertainty from the
very beginning of teaching measurement science, in particular with respect to the utilization of
software tools. The developed teaching material is based on the GUM method and makes use
of uncertainty toolboxes in the simulation environment. Based on examples in measurement
science education we discuss advantages and disadvantages of the proposed teaching philosophy
and include feedback from students.

1. Introduction and Motivation
Measurements are required for many tasks and the quality of measurement results has a major
impact on the overall outcome. Surprisingly, the concept of uncertainty is comparatively young
and was proposed for the first time in 1984 [1]. The idea was to overcome some of the limitations
that are associated with the previously used term error [2]. With respect to metrology, the
uncertainty reflects the fact that measurements can only provide incomplete knowledge and
that a measurement is only useful when the lack of knowledge is somehow quantified. This
is particularly true with respect to safety and reliability. Consider, for example, a monitoring
system that should validate that a certain parameter lies within a certain interval. However,
if the measurement uncertainty of the monitoring system becomes larger than the interval to
be monitored, then the monitoring system can never be used to validate that the parameter
is actually within the interval; it can only be used to validate that the parameter (with high
probability) resides outside of the interval. This may not be apparent for a user or even for a
developer of such a system, in particular considering that the engineer may not be an expert
in stochastic and uncertainty quantification. Therefore, it seems to be reasonable to provide a
method that is commonly accepted by practitioners and experts, can easily be applied for a wide
range of problems and still provides good results (yet they may not be optimal in a theoretical
sense).

In 1977, as it was recognized that there exists a lack of international consensus on the
expression of uncertainty in measurement, the world’s highest authority in metrology, the Comit
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International des Poids et Mesures (CIPM), requested the Bureau International des Poids et
Mesures (BIPM) to address the problem in conjunction with the national standards laboratories
and to make a recommendation. An effort that finally led to the definition of the Guide to the
Expression of Uncertainty in Measurement (GUM) [2]. According to the GUM, the ideal method
should be universal (applicable to all kinds of measurements and to all types of input data used
in measurements), internally consistent (directly derivable from the components that contribute
to it), and transferable (possibility to directly use the uncertainty evaluated for one result as
a component in evaluating the uncertainty of another measurement in which the first result is
used).

As a result of these requirements, the GUM treats all uncertainty contributions identically,
more or less as if the distributions were Gaussian and the relations were linear. This is in
accordance with one of the initial requirements for such a recommendation: The approach has
to be universal. However, the GUM working group was aware that there are limitations of the
original GUM method and supplementary [2, 3, 4] suggested to use Monte Carlo sampling in
certain cases. A recent survey [5] on current research activities in the field of measurement
uncertainty reports that most recent work addresses the GUM (Guide to the Expression of
Uncertainty in Measurement. Consequently, the present paper focuses on this approach, which
has a wide acceptance within the field of metrology.

The tools we use for education are Metas.UncLib Matlab toolbox[6], which implements the
GUM tree method [7] and also a toolbox for Matlab that is developed in our group. For the basic
operations as shown in this paper and as are required for bachelor level measurement science
education, both toolboxes are similar in usage and functionality.

2. Teaching Concept
The course in question is on Measurement Science, Sensors and Actuators and is intended for
students of information technology in the third year. Consequently, the students are familiar
with basic concepts of electrical engineering, have some experience with measurement devices
and also have background from a mathematically oriented course on stochastic. Therefore, they
are familiar with the concept of random variables, Ohms law and electrical networks. Thus
we decided to actually start the course with the concept of measurement uncertainty before we
introduce the SI system. Consequently, the discussion on ”good” definitions for base units can
also be based on the uncertainty concept. Furthermore, traceability is also directly linked to
this discussion. This should provide a holistic view of how measurement science work and that
knowing the uncertainty is as important as knowing the estimate of some parameter in question.

Our proposed introduction to the concept of uncertainty is illustrated in Table 1. Starting
from an interpretation of measurements as realization of random variables that provide some
information about the parameter in question we introduce the original GUM including terms
such as standard uncertainty, combined uncertainty and determination by means of Taylor series
expansion.

The first practical example is the determination of a resistance value and corresponding
combined standard uncertainty from the measurement of voltage and current with respective
rectangular distribution of uncertainty using Ohm’s law

R=~ (1)

as the measurement model and the corresponding equation for uncorrelated input quantities and

linearization
t u3(R) = (?f)zu%n n (gﬁ)zzﬂw) 2)
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Section  Content Educational Objective
1 Introduction to Uncertainty Understand measurements as realizations of random
variables
2 Introduction to original GUM, Error Know GUM and it's application to measurement
Propagation by means of Taylor Series equations
3 Example Resistor Measurement Practical experience with the original GUM
(Voltage /Current)
4 Consideration of systematic errors Understand importance of measurement model
5 Example Wheatstone Bridge - Simple Identify pitfalls in approach according to section 2
6 Example Wheatstone Bride - More Accurate Practice, learn that a correct consideration of
uncertainties may be time consuming if done "by
hand"
7 Example Wheatstone Bridge - Tool Based Understand the concepts of "uncertain” as a datatype
8 Example Wheatstone Bridge - Analysis of Understand that tools can ease the analysis of
Sources of Uncertainty measurement chains
9 Example Wheatstone Bridge - Influence of Understand that parameters that do not directly
Parameters contribute to the uncertainty may do so through other
parameters.
10 Discussion Understand that uncertainty must always be

considered in measurement. Awareness that tools are
available that simplifies most of the calculations.
Awareness that the tools and GUM have limitations

Table 1. Steps of the proposed introduction to the concept of uncertainty.

As a second step, systematic errors due to the inner resistance of the measurement instruments
are included in the measurement model.

After this simple example we apply the method to the Wheatstone Bridge circuit as another
common method to evaluate resistance. There we also introduce software tools for the evaluation
of uncertainty. This is described in the next section.

3. The Wheatstone Bridge with Uncertainties
Bridge circuits for the determination of unknown impedances and as realization of the
compensation method are important building blocks in measurement science and thus usually
treated in introductory courses. We use the Wheatstone Bridge to emphasize how tools for
uncertainty calculation may change the way how the material is presented to students. Figure 1
shows the circuit of a Wheatstone Bridge.

First, we start from the classical result for the equation to determinate the value of the

unknown resistor Ry, i.e.
R

Ry = Ry—~ 3
1= R Q)
and directly apply the GUM method to this, leading to
6Ry? 6Ry 2 6Ry 2
HR) = — v (R2) + — u(R3) + — v’(R 4
uc”(R1) 5R2u(2)+5R3U(3)+5R4U(4) (4)
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Figure 1. Example for a Wheatstone Bridge.

and let the students do an interpretation of the results. The aim is to point out that apparently

some important influences are missing, E.g., it seems that the choice of Uy and the accuracy of

the instrument that measures U, would not be important with respect to the uncertainty. This

is obviously not correct. This leads to a more detailed analysis, showing that it may not be

sufficient to only consider a measurement equation to fully determine the standard uncertainty.
The students are instructed to derive a more complete measurement model such as

UoRa(Rs + Ra)
R, = R 5
' T UoRi+U,(Rs+ Ry) (5)

Here we emphasize that a value that is measured to be zero may still be significantly different
from zero and must thus not be omitted for uncertainty considerations. In the next step the
measurement equation is derived with respect to Uy, Uy, R2, R3, R4, leading to the coefficients
Cgro = g%, Cgs = g% and so on. The resulting uncertainty of the resistor R; can be calculated
as follows:

uc?(Ry) = Cpou®(Uo) + Cfgu?(Uy) + Chou?(Ra) + Chgu®(Rs) + Chyu®(Ra) (6)

with the uncertainty u(X) of the respective input quantities and the coefficients calculated
previously.

Following this analysis we introduce toolboxes for Matlab which use a datatype ”uncertain”.
With this we perform the same calculation as above, but numerically and step by step as shown
in Figure 2 emphasizing that it does not require any additional effort to obtain the combined
standard uncertainty but providing the standard uncertainty for the input quantities. It is also
shown that the toolbox could also be applied to equation ( 3) but leading to an incorrect result
(Fig. 3).

The reason - failing to correctly consider the uncertainty of the voltage measurement (the
imbalance of the bridge) - is otherwise often not obvious for students. Consequently, several rules
for use of uncertain measurement results but also for the derivation of measurement equations
(including their simplification)can be derived. This allows obtaining the well known result
according to equation (3) but clearly highlights that other parameters that not occur in this
equation contribute to the uncertainty.

However, the benefit is not just the automatic calculation of the standard uncertainty.
Additionally, toolboxes also provide means to determine the contribution of the uncertain input
variables to the combined uncertainty of the result. This is shown in Figure 4. In the present
example the main contribution to the uncertainty comes from the uncertainty of the voltage
measurement, which is in practice not truly zero.
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>> UO=unc(5,0.1);R2=unc (1000, 5) ;R3=unc (1000, 5)
>> R4=unc (1001,1) ;Ug=unc(0,0.01) ;

>> 14=U/(R3+R4);

>> U4=I4*R4;

>> U2=U4+Ug;

>> I2=U2/R2;

>> R1=(U0-U2) /12,

(999.001 £ 10.713)

Figure 2. Calculation of the measurement result including the standard uncertainty of the
unknown resistor R; using Metas.UncLib toolbox for Matlab [6].

>> R2*R3/R4
ans =

(999.001 £+ 7.13415

Figure 3. Incorrect determination of the standard uncertainty of Ry due to direct application
of the GUM to the classical solution according to equation (3).

>> get_jacobi (R1)
ans =

0.0000 4.9950 4.9950 -0.9980 -7.992

(U0) (R2) (R3) (R4) (Uqg)

Figure 4. Determination of the contributions of the various sources of uncertainty to the
standard uncertainty of Ry using Matlab and an uncertainty toolbox

In this example the contribution of Uy to the uncertainty is close to zero. By reducing Uy to
half of its original value we show that although its contribution to the standard uncertainty is still
negligible we still see an increase of the combined standard uncertainty as other contributions
increase. Here we aim to emphasize such interdependencies and how they are easily studied
with the tools.

4. Discussion of Advantages and Disadvantages and Student Feedback

We consider toolboxes for determination of standard uncertainty just as an additional feature
of an electronic calculator. Similarly as nonlinear functions such as division or logarithm are
difficult to calculate without the help of electronic calculators, the results are readily available
without any effort. This implies that most of the time it is fully sufficient to understand what
a function e.g. logarithm does but not necessarily how it is actually calculated numerically
(although the concept should be known). As with the electronic calculator in general, a
frequently observed disadvantage is a loss of the 'feeling’ whether a result is feasible or not. We
consider toolboxes for determination of standard uncertainty just as an additional feature of an
electronic calculator. Similarly as nonlinear functions such as division or logarithm are difficult
to calculate without the help of electronic calculators, the results are readily available without



IMEKO IOP Publishing
Journal of Physics: Conference Series 588 (2015) 012054 doi:10.1088/1742-6596/588/1/012054

any effort. This implies that most of the time it is fully sufficient to understand what a function
e.g. logarithm does but not necessarily how it is actually calculated numerically (although the
concept should be known). As with the electronic calculator in general, a frequently observed
disadvantage is a loss of the 'feeling’ whether a result is feasible or not. Our aim with respect to
uncertainty is to put the focus on the fact that measurement results are actually realizations of
random variables and that the GUM tries to describe the probability density function using the
standard uncertainty. This is in contrast e.g. with the electronic evaluation of the logarithm,
where the result is highly accurate. This is not necessarily the case for the described tools, in
particular when only linearization according to the original GUM is used. In particular revisions
of the GUM such as projected in [8]. With the use of the tools students may not be aware of the
limitations of these tools as they are used to fully rely on the results from electronic calculators.

The positive students’ feedback reasons from the initial introduction of the uncertainties,
which are directly coupled to the variables. This allows copying the uncertainties given in the
specification directly to the variable itself. Since the students are familiar with Matlab, the
barrier of using the tool is pretty low. They can work in the known environment without
any additional training. Nevertheless, the most important positive point is that the students’
attention can be unglued from the already known mathematical calculations and guided towards
the measurement model construction and the analysis of the contribution of the various sources
of uncertainty. Especially, the simple access of the contribution of the various sources allows to
immediately highlight the main contributors to the uncertainty. The students get a feeling on
what shall be tried to improve first. On the other side some minor negative feedback was given,
e.g. on naming of commands such as get_jacobi, which may not be intuitive for the students.
Additionally, more experienced students objected that the provided number of digits for the
results (e.g. 999.001 £ 10.713) is somewhat in contradiction with the actual accuracy. We aim
to consider such aspects in the improvement of our tool.

5. Conclusion

We propose an approach for considering uncertainty in measurement science education from the
very beginning using special tools. The approach does not offer different or even better results;
it is currently simply based on the original GUM method. However, it offers an alternative
philosophy for the workflow. We believe that this approach may help to increase the awareness
with respect to uncertainty, has a high practical applicability in particular with respect to safety
engineering and may thus lead to consideration of uncertainty in early design phases.
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