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Abstract. The mathematical model that allows obtaining wave functions of electrons and holes 
and Coulomb potential in dependence on the parameters of the layer is proposed. In contrast to 
the common approach widely used in considerable literature, the proposed method allows to 
find the wave functions for all layers of the structure, both inside and outside the barrier layer. 
It was shown that increase of tunnel barrier transparency entails a transition from the dipolar 
electron-hole system (EHS) with a double-peak wave function of electrons to the spatially 
direct EHS. The proposed model takes into account the effect of the correlation interaction on 
the wave functions and the density of distribution of the carriers crosswise the layers. These 
calculations are useful for the analysis of many-particle nonequilibrium states occurring in 
low-dimensional structures. 

1.  Introduction 
The pioneer works [1, 2] have laid the foundation of the wide investigations in physics of  
many-particle interaction concerning low-dimensional exciton and electron-hole systems (EHS) of 
high density. The research was mainly held in the type-I heterostructures GaAs/AlGaAs with quantum 
wells (QW) both for electrons and holes. In case of high density of nonequilibrium charge carriers 
there were detected different phases of the condensed matter – the dipolar electron-hole liquid, the 
Bose-Einstein matter with challenging coherent, superconductive, and superfluid properties. In the 
present work we investigated the type-II Si/Si1-xGex/Si heterostructures with a strained layer Si1-xGex 
forming a rather deep potential well for holes and not a high barrier for electrons in the zone diagram. 
The height of the barrier grows with increasing content of germanium x [3, 4]. In such structures the 
EHS must have not less interesting properties [5]. In the work the behavior of the wave functions of 
charge carriers when changing the barrier parameters is modelled. Consider the Bohr radius of the 
exciton in bulk Si to be about 5 nm; the calculations were held for heterostructures with the thickness 
of solid solution L varying from 1 to 70 nm. The distribution of the carrier density crosswise the layer 
is obtained by solving the system of three equations: the two one-particle Schrödinger equations both 
for holes and electrons and the Poisson equation for the Coulomb energy of their interaction. 
Commonly in considerable literature the solution of such a system is obtained separately outside and 
inside the layer and then is joined smoothly at the quantum barrier borders. The correlative interaction 
of the carriers influential in the case of high density is then neglected. In the present work the 
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correlative interaction was counted according to the method offered in [6], then the asymptotic 
analysis was held and the numerical solution was obtained using the “hard” one-staged complex-
valued Rosenbrock scheme. We didn’t employ any additional technique of smooth joining. The 
numerical calculations showed that with decreasing height and/or width of the barrier the transition 
from the spatially indirect (dipolar) EHS to the spatially direct one occurs. Also it was revealed that 
there are some characteristics of the barrier in the case of high carrier density when the combined 
formation of both spatially direct and dipolar states is possible.  

2.  The model 
To describe the form of the charge carriers wave functions in quantum-confined layers in the type-II 
heterostructure (Si/Si1-xGex/Si) a one-dimensional boundary value problem for a system of three 
equations is set: two one-particle Schrödinger equations and the Poisson equation for the Coulomb 
energy: 
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Here   is the Planck constant, ε − the dielectric constant, 0ε  − the electric constant, *m  is the 
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Here L  is the width of the layer in nm. 
In the model the correlative interaction was counted according to the method of density functional 

theory [6]. For this purpose, the components ΨCeE e  and ΨChE h  were introduced in the Schrödinger 

equations in the system (1). As it was shown in [8] the correlation energy of the carriers is related to 

their wave functions Ψcarrier  in the following way: CE ~ ( )1 4

0n ~ ( )1 2Ψcarrier . The system (1) is 

considered on the segment − ≤ ≤A z A , where A is a value greater than the strained layer width. On 
the borders the homogeneous Neumann conditions are adjusted. We rewrite the system in 

dimensionless form. We choose the exciton energy 
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value 
μ

xa
 as a scale length. Here 
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 is the Bohr radius of the exciton, m is defined from a 

ratio 
* *

1 1 1= +
e hm m m

; μ  ~ 0.01 is a small parameter introduced in the system artificially to obtain the 

solutions including the interior transition layers. 
In the dimensionless form the boundary value problem becomes the following: 
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Boundary conditions are the following: 
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Here N − is a constant chosen in the course of numerical experiments that depends on the strained 

layer characteristics, 
2

04π
μ
⋅= xn a

K  ~1.  

3.  Asymptotic analysis 
The research procedure of the systems of equations with a small parameter besides the derivatives is 
proposed in [7]. If we put 0μ =  in the first two equations of the system (3), we obtain the so-called 
degenerate system: 
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The numerical solution of the system (3) is attracted to a stable solution of the degenerate system at a 
sufficient distance from the borders of the layer. The second equation (5) has two roots:

 ( ) ( ) 2 2( )ϕ −Ψ = − + ⋅h hh V z z E N  and 0Ψ =h . Outside the strained layer where ( ) 0=hV z   the 

stable root is ( ) 0Ψ =exh  and inside the layer the stable root is ( ) ( ) 2 2( )ϕ −Ψ = − + ⋅in
h hh V z E N , i.e. 

the holes are concentrated within the layer. Outside the layer the stable root of the first equation (5) is 
( ) ( )( )2 2ϕ −Ψ = + ⋅ex

ee z E N , that corresponds to the concentration of electrons outside the strained 

layer. Inside the layer where the inequality ( )ϕ≥ +e eV z E  is held the first equation (5) has a unique 

solution 
( )

0Ψ =
in

e  (the electrons are ejected from the layer). If ( )ϕ< +e eV z E  the zero root becomes 

unstable and there is the second, non-zero, root of the equation ( ) ( )( )2 2ϕ −Ψ = − + + ⋅in
e ee V z E N , 
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which is stable in this case. This means that at sufficiently low height of the barrier the electrons can 
concentrate within the layer. 

The potential energy in the zeroth approximation (in powers of the small parameter μ) can be 

determined from the third equation of system (3), with substituted squares of the wave functions Ψe  

and Ψh derived from a degenerate system. Using the zeroth approximation for the potential, we can 
determine the energy level for electrons eE . In the present work we used the method of inverse 

iterations for this purpose. The holes energy level, hE  is obtained using the common technique 

for calculation of energy levels for a particle in a potential well.  
 

4.  The results of numerical experiments 
The results of numerical experiments are shown in figure 1. In the figure the normalized density 
distribution of electrons (solid line) and holes (dashed line) crosswise the layer is represented. Vertical 
dashed lines indicate the boundaries of the SiGe layer. The main conclusions are the following. 

 

 
 

Figure1. Normalized density distribution of electrons (solid line) and holes (dashed line)  
crosswise the layer SiGe at different values of the layer width L, the barrier height Ve. and the  

parameter N. Vertical dashed lines indicate the boundaries of the SiGe layer. 
(а) L = 2 nm, Ve = 4 meV, N = 0.09; (b) L = 2 nm, Ve = 5 meV, N = 0.18;  

(c) L = 5 nm, Ve = 10 meV, N = 0.081; (d) L = 5 nm, Ve = 10 meV, N = 0.055. 
 

 
At low barrier height (Ve ≤ 5 meV, figure 1 (a)) and the arbitrary layer width the spatially direct EHS 
is implemented. Despite the barrier in the conduction band the maximum of the electron density is 
located in the center of the SiGe layer. (The wave function for holes in all cases is well localized in 
QW formed by SiGe layer in the valence band, however, the distribution of the electron and hole 
densities crosswise the layer does not coincide). This behavior of the electron wave function is 
qualitatively explained in [9] by the fact that for the concentrations of nonequilibrium carriers 
commonly used in the experiments the band bending caused by the Coulomb interaction of spatially 
separated electrons and holes creates a potential well for electrons in the SiGe layer (Hartree potential) 
comparable with the barrier height, in fact transforming these structures into a type-I heterostructure. 
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Note, that in such structures (at x  ≈ 0.05) for the layer width of 70 and 5 nm, respectively, the 
electron-hole liquid (EHL) was observed, which was spatially direct [10, 11]. 
With the increase of the barrier height (Ve = 5 meV, figure 1 (b)) the distribution of electrons 
crosswise the layer becomes double-peak. The transition to the dipolar EHS occurs. With further 
increase of the width and/or height of the barrier (Ve = 10 meV, L = 5 nm, figure 1 (c)) and not very 
high carrier density (low correlation interaction) the EHS becomes dipolar. Exactly in such structures 
upon the excitation the dipolar excitons and biexcitons must occur, and at high concentrations of 
nonequilibrium carriers the dipolar EHL must appear. 

In the structure with the same parameters (figure 1 (d)) but higher correlative interaction (i.e. with 
higher density of nonequilibrium carriers) the two-component EHS is implemented. The holes are still 
well localized in the SiGe layer. The electron wave function has three maxima: two symmetric peaks 
in the Si layer and a less intense maximum at the center of the layer. In such a system the observation 
of the two-component excited state is possible. 
 
5. Conclusion 
The mathematical model that allows obtaining wave functions of electrons and holes and Coulomb 
potential in dependence on the parameters of the layer is proposed. In contrast to the common 
approach widely used in considerable literature, the proposed method allows to find the wave 
functions (and therefore the distribution of the carriers crosswise the layer) for all layers of the 
structure, both inside and outside the barrier layer, and does not require any additional artificial 
technique of smooth joining of the wave functions at the boundaries of the layers. The calculations 
showed that with decreasing barrier height and/or width the transition from the spatially indirect 
(dipolar) EHS to the spatially direct one occurs. The proposed model takes into account the effect of 
the correlation interaction on the wave functions and the density of distribution of the carriers 
crosswise the layers. This consideration is significant at high density of nonequilibrium carriers (i.e. at 
high level of excitation). It is shown that under certain parameters of the barrier at high carrier density 
the formation of both spatially direct and dipolar states is possible. 
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